The persistence of chlorinated alkanes in aquatic environments poses significant health risks due to its biotoxicity and high volatility,which contributes to both water and air pollution.This study investigates the ef...The persistence of chlorinated alkanes in aquatic environments poses significant health risks due to its biotoxicity and high volatility,which contributes to both water and air pollution.This study investigates the efficacy of carbon dioxide radical anion(CO_(2)·^(-))mediated advanced reduction processes(ARPs)for the reductive dechlorination of chlorinated alkanes using small molecular monocarboxylic acids(SMAs)under UV irradiation.The study focused on formic acid(HCOOH),acetic acid(CH_3COOH),and propionic acid(CH_3CH_(2)COOH)to generate CO_(2)·^(-),revealing that UV/HCOOH system exhibits a notably high chloroform(CF)degradation efficiency of 97.8%in 90 min.Kinetic studies indicated a linear relationship between the HCOOH concentrations and the observed reaction rate constants(k_(obs)),demonstrating that CO_(2)·^(-)production is crucial for CF degradation.Electron paramagnetic resonance spectroscopy identified CO_(2)·^(-)and hydroxyl radicals(HO·)as the active species,with the former playing a predominant role in CF degradation.The study also explored the influence of carbon chain length in SMAs on CF degradation,finding that longer chains decrease the degradation efficiency,potentially due to reduced UV activation.A higher reaction rate constant(k_(obs))under acidic conditions,with a marked decrease in efficiency as the pH exceeds 3.7,where HCOO^(-)becomes predominant.This study enhances our understanding of CO_(2)·^(-)mediated ARPs and explores potential applications in environmental remediation,providing insights into the pathways and mechanisms of CF degradation.The UV/SMAs systems offer advantages for practical applications,such as milder reaction conditions and higher efficiency compared to traditional methods.展开更多
The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount...The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.展开更多
US EPA's Community Multiscale Air Quality modeling system(CMAQ) with Process Analysis tool was used to simulate and quantify the contribution of individual atmospheric processes to PM_(2.5) concentration in Qingda...US EPA's Community Multiscale Air Quality modeling system(CMAQ) with Process Analysis tool was used to simulate and quantify the contribution of individual atmospheric processes to PM_(2.5) concentration in Qingdao during three representative PM_(2.5) pollution events in the winter of 2015 and 2016. Compared with the observed surface PM_(2.5) concentrations, CMAQ could reasonably reproduce the temporal and spatial variations of PM_(2.5) during these three events. Process analysis results show that primary emissions accounted for 72.7%–93.2% of the accumulation of surface PM_(2.5) before and after the events.When the events occurred, primary emissions were still the major contributor to the increase of PM_(2.5) in Qingdao, however the contribution percentage reduced significantly,which only account for 51.4%–71.8%. Net contribution from horizontal and vertical transport to the accumulation of PM_(2.5) was also positive and its percentage increased when events occurred. Only 1.1%–4.6% of aerosol accumulation was due to PM processes and aqueous chemical processes before and after events. When the events occurred,contribution from PM processes and aqueous chemistry increased to 6.0%–11.8%. Loss of PM_(2.5) was mainly through horizontal transport, vertical transport and dry deposition, no matter during or outside the events. Wet deposition would become the main removal pathway of PM_(2.5), when precipitation occurred.展开更多
电光相位调制器(Phase Modulator,PM)因无需偏置,线性调制和插损小等优点,被广泛应用于相干光通信、微波信号产生、处理和测量等领域.调制指数和半波电压是评估PM性能的关键参数.传统基于(Optical Spectrum Analyzer,OSA)的方法面临测...电光相位调制器(Phase Modulator,PM)因无需偏置,线性调制和插损小等优点,被广泛应用于相干光通信、微波信号产生、处理和测量等领域.调制指数和半波电压是评估PM性能的关键参数.传统基于(Optical Spectrum Analyzer,OSA)的方法面临测量分辨率低和存在测量盲区问题.为此,本文提出了一种基于电谱分析(Unequal Voltage based on Electrical Spectrum Analyzer,UV-ESA)的自校准、高精度的PM特性参数测量方法.该方法利用同频、不同驱动电压比的情况下,通过分析失谐光学载波和调制边带分别与载波拍音电谱,实现PM调制指数和半波电压的高频特性参数测量.该方法不需改变测量链路结构,无需辅助宽带微波源或电光调制器,验证了所提方法的有效性,并对比OSA方法对结果的准确性进行了验证.展开更多
Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct ...Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.展开更多
Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we s...Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we systematically studied the debromination efficiency and mechanism of para-bromophenol(4-BP) by a recently developed UV/sulfite process. 4-BP underwent rapid degradation with the kinetics accelerated with the increasing sulfite concentration, pH(6.1–10) and temperature, whereas inhibited by dissolved oxygen and organic solvents. The apparent activation energy was estimated to be 27.8 kJ/mol. The degradation mechanism and pathways of 4-BP were explored by employing N2O and nitrate as the electron scavengers and liquid chromatography/mass spectrometry to identify the intermediates. 4-BP degradation proceeded via at least two pathways including direct photolysis and hydrated electron-induced debromination. The contributions of both pathways were distinguished by quantifying the quantum yields of 4-BP via direct photolysis and hydrated electron production in the system. 4-BP could be readily completely debrominated with all the substituted Br released as Br-, and the degradation pathways were also proposed. This study would shed new light on the efficient dehalogenation of brominated aromatics by using the UV/sulfite process.展开更多
The degradation of metoprolol(MTP)by the UV/sulfite with oxygen as an advanced reduction process(ARP)and that without oxygen as an advanced oxidation process(AOP)was comparatively studied herein.The degradation of MTP...The degradation of metoprolol(MTP)by the UV/sulfite with oxygen as an advanced reduction process(ARP)and that without oxygen as an advanced oxidation process(AOP)was comparatively studied herein.The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of 1.50×10^(-3)sec^(−1)and 1.20×10^(-3)sec^(−1),respectively.Scavenging experiments demonstrated that both e^(−)_(aq)and H·played a crucial role in MTP degradation by the UV/sulfite as an ARP,while SO_(4)^(·−)was the dominant oxidant in the UV/sulfite AOP.The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8.The results could be well explained by the pH impacts on the MTP speciation and sulfite species.Totally six transformation products(TPs)were identified from MTP degradation by the UV/sulfite ARP,and two additional ones were detected in the UV/sulfite AOP.The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory(DFT).The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that e^(−)_(aq)/H·and SO_(4)^(·−)might share similar reaction mechanisms,primarily including hydroxylation,dealkylation,and H abstraction.The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Struc-ture Activity Relationships(ECOSAR)software,due to the accumulation of TPs with higher toxicity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52270165 and 51978537)the Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province。
文摘The persistence of chlorinated alkanes in aquatic environments poses significant health risks due to its biotoxicity and high volatility,which contributes to both water and air pollution.This study investigates the efficacy of carbon dioxide radical anion(CO_(2)·^(-))mediated advanced reduction processes(ARPs)for the reductive dechlorination of chlorinated alkanes using small molecular monocarboxylic acids(SMAs)under UV irradiation.The study focused on formic acid(HCOOH),acetic acid(CH_3COOH),and propionic acid(CH_3CH_(2)COOH)to generate CO_(2)·^(-),revealing that UV/HCOOH system exhibits a notably high chloroform(CF)degradation efficiency of 97.8%in 90 min.Kinetic studies indicated a linear relationship between the HCOOH concentrations and the observed reaction rate constants(k_(obs)),demonstrating that CO_(2)·^(-)production is crucial for CF degradation.Electron paramagnetic resonance spectroscopy identified CO_(2)·^(-)and hydroxyl radicals(HO·)as the active species,with the former playing a predominant role in CF degradation.The study also explored the influence of carbon chain length in SMAs on CF degradation,finding that longer chains decrease the degradation efficiency,potentially due to reduced UV activation.A higher reaction rate constant(k_(obs))under acidic conditions,with a marked decrease in efficiency as the pH exceeds 3.7,where HCOO^(-)becomes predominant.This study enhances our understanding of CO_(2)·^(-)mediated ARPs and explores potential applications in environmental remediation,providing insights into the pathways and mechanisms of CF degradation.The UV/SMAs systems offer advantages for practical applications,such as milder reaction conditions and higher efficiency compared to traditional methods.
基金Project supported by the Science Project of Harbin City(No. H2001-12)the Youth Foundation of School of Municipal and Environmental Engineering in Harbin Institute of Technology(No. 01306914).
文摘The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.
基金supported by the National Natural Science Foundation of China(Nos.41430646,41305087)the Shandong Provincial Natural Science Foundation,China(No.ZR2013DQ022)+1 种基金the National Key Basic Research Program of China(No.2014CB953701)the Qingdao science and technology project(14-8-3-10-NSH)
文摘US EPA's Community Multiscale Air Quality modeling system(CMAQ) with Process Analysis tool was used to simulate and quantify the contribution of individual atmospheric processes to PM_(2.5) concentration in Qingdao during three representative PM_(2.5) pollution events in the winter of 2015 and 2016. Compared with the observed surface PM_(2.5) concentrations, CMAQ could reasonably reproduce the temporal and spatial variations of PM_(2.5) during these three events. Process analysis results show that primary emissions accounted for 72.7%–93.2% of the accumulation of surface PM_(2.5) before and after the events.When the events occurred, primary emissions were still the major contributor to the increase of PM_(2.5) in Qingdao, however the contribution percentage reduced significantly,which only account for 51.4%–71.8%. Net contribution from horizontal and vertical transport to the accumulation of PM_(2.5) was also positive and its percentage increased when events occurred. Only 1.1%–4.6% of aerosol accumulation was due to PM processes and aqueous chemical processes before and after events. When the events occurred,contribution from PM processes and aqueous chemistry increased to 6.0%–11.8%. Loss of PM_(2.5) was mainly through horizontal transport, vertical transport and dry deposition, no matter during or outside the events. Wet deposition would become the main removal pathway of PM_(2.5), when precipitation occurred.
文摘电光相位调制器(Phase Modulator,PM)因无需偏置,线性调制和插损小等优点,被广泛应用于相干光通信、微波信号产生、处理和测量等领域.调制指数和半波电压是评估PM性能的关键参数.传统基于(Optical Spectrum Analyzer,OSA)的方法面临测量分辨率低和存在测量盲区问题.为此,本文提出了一种基于电谱分析(Unequal Voltage based on Electrical Spectrum Analyzer,UV-ESA)的自校准、高精度的PM特性参数测量方法.该方法利用同频、不同驱动电压比的情况下,通过分析失谐光学载波和调制边带分别与载波拍音电谱,实现PM调制指数和半波电压的高频特性参数测量.该方法不需改变测量链路结构,无需辅助宽带微波源或电光调制器,验证了所提方法的有效性,并对比OSA方法对结果的准确性进行了验证.
文摘Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.
基金supported by the National Natural Science Foundation of China(No.21307057)the Natural Science Foundation of Jiangsu Province(No.BK20130577)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP,No.20130091120014)the Fundamental Research Funds for the Central Universities(No.20620140128)
文摘Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we systematically studied the debromination efficiency and mechanism of para-bromophenol(4-BP) by a recently developed UV/sulfite process. 4-BP underwent rapid degradation with the kinetics accelerated with the increasing sulfite concentration, pH(6.1–10) and temperature, whereas inhibited by dissolved oxygen and organic solvents. The apparent activation energy was estimated to be 27.8 kJ/mol. The degradation mechanism and pathways of 4-BP were explored by employing N2O and nitrate as the electron scavengers and liquid chromatography/mass spectrometry to identify the intermediates. 4-BP degradation proceeded via at least two pathways including direct photolysis and hydrated electron-induced debromination. The contributions of both pathways were distinguished by quantifying the quantum yields of 4-BP via direct photolysis and hydrated electron production in the system. 4-BP could be readily completely debrominated with all the substituted Br released as Br-, and the degradation pathways were also proposed. This study would shed new light on the efficient dehalogenation of brominated aromatics by using the UV/sulfite process.
基金This study was supported by the Guangdong introducing innovative and entrepreneurial teams(No.2019ZT08L213)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0403)+2 种基金the National Natural Science Foundation of China(Nos.51979044 and 42177045)the Young Talent Project of Beijing Normal University at Zhuhai(No.310432101)We also thank the support received from China Scholarship Council(CSC)for providing a graduate fellowship to Y.C.(No.202006120356).
文摘The degradation of metoprolol(MTP)by the UV/sulfite with oxygen as an advanced reduction process(ARP)and that without oxygen as an advanced oxidation process(AOP)was comparatively studied herein.The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of 1.50×10^(-3)sec^(−1)and 1.20×10^(-3)sec^(−1),respectively.Scavenging experiments demonstrated that both e^(−)_(aq)and H·played a crucial role in MTP degradation by the UV/sulfite as an ARP,while SO_(4)^(·−)was the dominant oxidant in the UV/sulfite AOP.The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8.The results could be well explained by the pH impacts on the MTP speciation and sulfite species.Totally six transformation products(TPs)were identified from MTP degradation by the UV/sulfite ARP,and two additional ones were detected in the UV/sulfite AOP.The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory(DFT).The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that e^(−)_(aq)/H·and SO_(4)^(·−)might share similar reaction mechanisms,primarily including hydroxylation,dealkylation,and H abstraction.The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Struc-ture Activity Relationships(ECOSAR)software,due to the accumulation of TPs with higher toxicity.