In order to fabricate a novel ZnO/cotton composite, a high proportion of ZnO nanoparticles were assembled in cotton fibers, and the as-obtained cotton fabric can possess better UV blocking property compared with commo...In order to fabricate a novel ZnO/cotton composite, a high proportion of ZnO nanoparticles were assembled in cotton fibers, and the as-obtained cotton fabric can possess better UV blocking property compared with common ZnO/cotton composite. Firstly, the cotton fibers were pre-treated by hydrogen peroxide solution(H_2 O_2) and sodium hydroxide(NaOH), urea(CON_2 H_4). Secondly, the fabric was fabricated via in situ deposition. The effects of concentration of treatment liquid, ammonia-smoking time and curing temperature on the tensile property of the fabric, UV blocking property and water-washing durability test of as-obtained cotton fabrics were investigated. Thirdly, the as-obtained cotton sample was characterized by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM). It was shown that ZnO nanoparticles were assembled between cotton fibers, the surface and inside of the lumen and the mesopores of cotton fibers, while the content of nano-ZnO assembled in fabric can reach 15.63 wt%. It is proved that the finished fabric can obtain a very excellent UV blocking property, under the condition of zinc ion in concentration of 15 wt%, ammonia-smoking time for 10 min, curing temperature at 150 ℃ for 2 min.展开更多
The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-vip system can be an effective way t...The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-vip system can be an effective way to obtain UV blocking materials. Firstly, a new anionic Schiff base, N,N'bis(salicylidine)-4,4'-diaminostilbene-2,2'-disulfonic acid (SDSD), has been synthesized, which was intercalated into Zn-Al-LDH by anion-exchange method. FT-IR and XRD illustrate the layered organic-inorganic composite, Zn-Al-SDSD-LDH, has been successfully synthesized with high crystallinity. Laser particle size analyzer, SEM and TEM show that particle size distributions of Zn-Al-SDSD-LDH is in the range 100--500 nm. UV-vis absorption spectra show that Zn-Al-SDSD-LDH has better UV absorption than the pristine Zn-Al-LDH and SDSD. Furthermore, the mixture of asphalt and 3 wt% Zn-Al-SDSD-LDH presents enhanced UV blocking property relative to the pristine asphalt after irradiating by UV spray accelerated weathering test. Therefore, this work not only develops a new type of host-vip Zn-Al-SDSD- LDH, but also confirms it can be an effective asphalt UV blocking material for practical application.展开更多
基金Funded by the National Key R&D Program of China(2017YFB0309100)
文摘In order to fabricate a novel ZnO/cotton composite, a high proportion of ZnO nanoparticles were assembled in cotton fibers, and the as-obtained cotton fabric can possess better UV blocking property compared with common ZnO/cotton composite. Firstly, the cotton fibers were pre-treated by hydrogen peroxide solution(H_2 O_2) and sodium hydroxide(NaOH), urea(CON_2 H_4). Secondly, the fabric was fabricated via in situ deposition. The effects of concentration of treatment liquid, ammonia-smoking time and curing temperature on the tensile property of the fabric, UV blocking property and water-washing durability test of as-obtained cotton fabrics were investigated. Thirdly, the as-obtained cotton sample was characterized by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM). It was shown that ZnO nanoparticles were assembled between cotton fibers, the surface and inside of the lumen and the mesopores of cotton fibers, while the content of nano-ZnO assembled in fabric can reach 15.63 wt%. It is proved that the finished fabric can obtain a very excellent UV blocking property, under the condition of zinc ion in concentration of 15 wt%, ammonia-smoking time for 10 min, curing temperature at 150 ℃ for 2 min.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 21301016 and 21473013), the 973 Program (Grant No. 2014CB- 932103), and the Beijing Municipal Natural Science Foundation (Grant No. 2152016).
文摘The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-vip system can be an effective way to obtain UV blocking materials. Firstly, a new anionic Schiff base, N,N'bis(salicylidine)-4,4'-diaminostilbene-2,2'-disulfonic acid (SDSD), has been synthesized, which was intercalated into Zn-Al-LDH by anion-exchange method. FT-IR and XRD illustrate the layered organic-inorganic composite, Zn-Al-SDSD-LDH, has been successfully synthesized with high crystallinity. Laser particle size analyzer, SEM and TEM show that particle size distributions of Zn-Al-SDSD-LDH is in the range 100--500 nm. UV-vis absorption spectra show that Zn-Al-SDSD-LDH has better UV absorption than the pristine Zn-Al-LDH and SDSD. Furthermore, the mixture of asphalt and 3 wt% Zn-Al-SDSD-LDH presents enhanced UV blocking property relative to the pristine asphalt after irradiating by UV spray accelerated weathering test. Therefore, this work not only develops a new type of host-vip Zn-Al-SDSD- LDH, but also confirms it can be an effective asphalt UV blocking material for practical application.