It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
The adsorption performance of toluene on ultra-stable Y zeolite (USY) was studied via dynamic adsorption. The eff ects of bed temperature, initial concentration, and feed fl ow rate on adsorption were investigated. Th...The adsorption performance of toluene on ultra-stable Y zeolite (USY) was studied via dynamic adsorption. The eff ects of bed temperature, initial concentration, and feed fl ow rate on adsorption were investigated. The Yoon-Nelson model was used to fi t the toluene breakthrough curves. The length of mass transfer zone was calculated based on breakthrough curves. The Langmuir-Freundlich model fi t the adsorption isotherms of toluene on USY, which indicated that the surface of USY was heterogeneous. The adsorption isosteric heat calculated from adsorption isotherms ranged from 54.3 to 69.8 kJ/mol, indicating physical adsorption. The combined technique of temperature swing adsorption with vacuum swing adsorption (TVSA) exhibited excellent desorption performance, which was attributed to the low desorption activation energy. Under optimized TVSA conditions, the desorption rate of toluene reached 90.6% within 10 min. The long-term cyclic utilization results indicated that the adsorption capacity of USY was stable.展开更多
The catalytic behavior of a catalyst for chlorine-containing volatile organic compounds(CVOCs) oxidation largely depends on the synergistic interaction between the oxidizing and acidic sites.In the present work,two ca...The catalytic behavior of a catalyst for chlorine-containing volatile organic compounds(CVOCs) oxidation largely depends on the synergistic interaction between the oxidizing and acidic sites.In the present work,two catalysts with different distributions of CeO_(2) on the inner and outer surfaces of 4.0Ce-USY-ex and 4.0Ce-USY-dp(USY zeolite) were prepared respectively by ion exchange and deposition methods,with a purpose of finding out how the location of the oxidation sites(CeO_(2)) influence its synergistic effect with the acidic sites of zeolite.The results show that 4.0Ce-USY-ex is much more active for catalytic degradation of 1,2-dichloroethane(DCE),while 4.0Ce-USY-dp catalyst exhibit higher catalytic degradation activity for other structured CVOCs(dichloromethane(DCM),trichloroethylene(TCE),chlorobenzene(CB)).CeO_(2) in 4.0Ce-USY-ex catalyst mainly disperses in the pore channels of USY zeolite,and there are many strong acid centers on the surface,which is conducive to the dechlorination conversion of CVOCs.However,CeO_(2) in 4.0Ce-USY-dp catalyst is mainly distributed on the outer surface of USY and has strong oxidation ability,which contributes to the deep oxidation of CVOCs.Moreover,the presence of a large number of strong acid centers on the catalyst surface of 4.0Ce-USY-ex catalysts leads to severe accumulation of surface carbon species and significantly decreases its stability towards DCE.However,a large number of active oxygen species on the surface of 4.0Ce-USY-dp and CeO_(2) catalysts are beneficial to the deep oxidation of DCE,reducing the formation of surface carbon and thus improving the stability of the catalyst.Thus,the influence of the location of the oxidation sites on its synergistic effect with the acidic sites was established in the present work,which could provide some new ideas for the rational design of CVOCs degradation catalyst with appropriate distribution of active sites.展开更多
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
文摘The adsorption performance of toluene on ultra-stable Y zeolite (USY) was studied via dynamic adsorption. The eff ects of bed temperature, initial concentration, and feed fl ow rate on adsorption were investigated. The Yoon-Nelson model was used to fi t the toluene breakthrough curves. The length of mass transfer zone was calculated based on breakthrough curves. The Langmuir-Freundlich model fi t the adsorption isotherms of toluene on USY, which indicated that the surface of USY was heterogeneous. The adsorption isosteric heat calculated from adsorption isotherms ranged from 54.3 to 69.8 kJ/mol, indicating physical adsorption. The combined technique of temperature swing adsorption with vacuum swing adsorption (TVSA) exhibited excellent desorption performance, which was attributed to the low desorption activation energy. Under optimized TVSA conditions, the desorption rate of toluene reached 90.6% within 10 min. The long-term cyclic utilization results indicated that the adsorption capacity of USY was stable.
基金Project supported by the National Key Research and Development Program of China (2022YFB3504200)。
文摘The catalytic behavior of a catalyst for chlorine-containing volatile organic compounds(CVOCs) oxidation largely depends on the synergistic interaction between the oxidizing and acidic sites.In the present work,two catalysts with different distributions of CeO_(2) on the inner and outer surfaces of 4.0Ce-USY-ex and 4.0Ce-USY-dp(USY zeolite) were prepared respectively by ion exchange and deposition methods,with a purpose of finding out how the location of the oxidation sites(CeO_(2)) influence its synergistic effect with the acidic sites of zeolite.The results show that 4.0Ce-USY-ex is much more active for catalytic degradation of 1,2-dichloroethane(DCE),while 4.0Ce-USY-dp catalyst exhibit higher catalytic degradation activity for other structured CVOCs(dichloromethane(DCM),trichloroethylene(TCE),chlorobenzene(CB)).CeO_(2) in 4.0Ce-USY-ex catalyst mainly disperses in the pore channels of USY zeolite,and there are many strong acid centers on the surface,which is conducive to the dechlorination conversion of CVOCs.However,CeO_(2) in 4.0Ce-USY-dp catalyst is mainly distributed on the outer surface of USY and has strong oxidation ability,which contributes to the deep oxidation of CVOCs.Moreover,the presence of a large number of strong acid centers on the catalyst surface of 4.0Ce-USY-ex catalysts leads to severe accumulation of surface carbon species and significantly decreases its stability towards DCE.However,a large number of active oxygen species on the surface of 4.0Ce-USY-dp and CeO_(2) catalysts are beneficial to the deep oxidation of DCE,reducing the formation of surface carbon and thus improving the stability of the catalyst.Thus,the influence of the location of the oxidation sites on its synergistic effect with the acidic sites was established in the present work,which could provide some new ideas for the rational design of CVOCs degradation catalyst with appropriate distribution of active sites.