The operational and regional conditions to which the prestressed concrete sleeper(PCS)is subjected in a railway track significantly contribute to its performance and durability.Maintaining the health of PCS poses chal...The operational and regional conditions to which the prestressed concrete sleeper(PCS)is subjected in a railway track significantly contribute to its performance and durability.Maintaining the health of PCS poses challenges,and one of these issues involves the potential occurrence of longitudinal cracks in reinforcing bars,which can be caused by various constructional,functional,and environmental factors.Longitudinal cracks in PCS compromise the structural performance,resulting in a reduced capacity to withstand the loads exerted by moving vehicles.The current evaluations not only fail to yield a precise parameter for estimating the behavior and response of the PCS,but they also overlook the specific conditions of the PCS,such as prestressing,and only provide limited information regarding existing damage.Balancing the need for accurate evaluation with consideration of costs and resources,and making informed decisions about maintenance and track performance enhancement,has become a multifaceted challenge in ensuring a robust PCS assessment.This research introduces a novel methodology to improve the evaluation of mechanical and geometrical parameters of PCS over their operational lifespan.The objective is to enhance the accuracy of PCS performance estimation by concentrating on detecting longitudinal cracks.The suggested approach seamlessly integrates model updating methods and the finite element(FE)approach to achieve an accurate and timely assessment of PCS conditions.This comprehensive examination scrutinizes the methodology by applying artificial cracks to the PCS.In addition to introducing this assessment approach,a detailed examination is conducted on a laboratory-simulated PCS featuring various combinations of longitudinal cracks measuring 40,80,and 120 cm in length.This systematic and rigorous approach ensures the reliability and robustness of the methodology.Ultimately,the parameters of cross-sectional area,moment of inertia,and modulus of elasticity,which significantly impact the performance of this sleeper,are explored and demonstrated through functional methodologies.The findings suggest that assessing and addressing damage should be conducted through a comprehensive and integrated procedure,taking into account the actual conditions of the PCS.Longitudinal cracks lead to a substantial decrease in the performance of these components in railway tracks.By applying the proposed methods,it is anticipated that the evaluation error for these components will be reduced by approximately 30%compared to visual inspections,particularly in predicting the extent of damage for cracks measuring up to 120 cm.This research has the potential to significantly enhance the evaluation of PCS performance and mitigate the impact of longitudinal cracks on the safety and longevity of ballasted railway tracks in desert areas.展开更多
Persistent and maladaptive drug-related memories represent a key component in drug addiction.Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconso...Persistent and maladaptive drug-related memories represent a key component in drug addiction.Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure(MRUP),a non-pharmacological strategy intertwining two distinct memory processes:reconsolidation and extinction—alternatively termed“the memory retrieval-extinction procedure”.This procedure presents a promising approach to attenuate,if not erase,entrenched drug memories and prevent relapse.The present review delineates the applications,molecular underpinnings,and operational boundaries of MRUP in the context of various forms of substance dependence.Furthermore,we critically examine the methodological limitations of MRUP,postulating potential refinement to optimize its therapeutic efficacy.In addition,we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction.Overall,existing studies underscore the significant potential of MRUP,suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.展开更多
Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method...Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method for representing observational uncertainty and develops a two-step approximate Bayesian computation(ABC)framework using time-series data.Within the ABC framework,Euclidean and Bhattacharyya distances are employed as uncertainty quantification metrics to delineate approximate likelihood functions in the initial and subsequent steps,respectively.A novel variational Bayesian Monte Carlo method is introduced to efficiently apply the ABC framework amidst observational uncertainty,resulting in rapid convergence and accurate parameter estimation with minimal iterations.The efficacy of the proposed updating strategy is validated by its application to a shear frame model excited by seismic wave and an aviation pump force sensor for thermal output analysis.The results affirm the efficiency,robustness,and practical applicability of the proposed method.展开更多
In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilizati...In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.展开更多
A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the ...A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.展开更多
Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-eff...Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-effective geophysical technique can acquire high-density data;however,uncertainty and nonuniqueness inherent in ERT impede its usage for stratigraphy identification.This paper integrates ERT and onsite observations for the first time to propose a novel method for characterizing stratigraphic profiles.The method consists of two steps:(1)ERT for prior knowledge:ERT data are processed by soft clustering using the Gaussian mixture model,followed by probability smoothing to quantify its depthdependent uncertainty;and(2)Observations for calibration:a spatial sequential Bayesian updating(SSBU)algorithm is developed to update the prior knowledge based on likelihoods derived from onsite observations,namely topsoil and boreholes.The effectiveness of the proposed method is validated through its application to a real slope site in Foshan,China.Comparative analysis with advanced borehole-driven methods highlights the superiority of incorporating ERT data in stratigraphic modeling,in terms of prediction accuracy at borehole locations and sensitivity to borehole data.Informed by ERT,reduced sensitivity to boreholes provides a fundamental solution to the longstanding challenge of sparse measurements.The paper further discusses the impact of ERT uncertainty on the proposed model using time-lapse measurements,the impact of model resolution,and applicability in engineering projects.This study,as a breakthrough in stratigraphic modeling,bridges gaps in combining geophysical and geotechnical data to address measurement sparsity and paves the way for more economical geotechnical exploration.展开更多
Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ...Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.展开更多
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori...Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%.展开更多
Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assist...Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.展开更多
In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is p...In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.展开更多
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge...The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.展开更多
A model updating optimization algorithm under quadratic constraints is applied to structure dynamic model updating. The updating problems of structure models are turned into the optimization with a quadratic constrain...A model updating optimization algorithm under quadratic constraints is applied to structure dynamic model updating. The updating problems of structure models are turned into the optimization with a quadratic constraint. Numerical method is presented by using singular value decomposition and an example is given. Compared with the other method, the method is efficient and feasible.展开更多
In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p <...In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p < 1, and it penalizes small coefficients over a wider range meanwhile applies less bias to the larger coefficients.In this work, on the basis of two-level Bregman method with dictionary updating(TBMDU), we use the modified thresholding to minimize the non-convex function and propose the generalized TBMDU(GTBMDU) algorithm.The experimental results on magnetic resonance(MR) image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed algorithm can efficiently reconstruct the MR images and present advantages over the previous soft thresholding approaches.展开更多
The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model...The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model that bears relation to erroneous elements only is derived.This model is termed local errors model,which reduces orders and computational loads compared with global stiffness matrix. Secondly,an inverse eigenvalue method is used to update model errors. The results of a numerical experiment demonstrate that the method is quite effective.展开更多
For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updati...For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes.展开更多
This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU...This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU) neural network is adopted to formulate the forecast model and learn the potential rules in the field observations using the Nesterov-accelerated Adam(Nadam) algorithm.In the proposed procedure,the GRU-based forecast model is first trained based on the field data of previous and current stages.Then,the field data of the current stage are used as input to predict the deformation response of the next stage via the previously trained GRU-based forecast model.This updating process will loop up till the end of the excavation.This procedure has the advantage of directly predicting the deformation response of unexcavated stages based on the monitoring data.The proposed intelligent procedure is verified on two well-documented cases in terms of accuracy and reliability.The results indicate that both wall deflection and ground settlement are accurately predicted as the excavation proceeds.Furthermore,the advantages of the proposed intelligent procedure compared with the Bayesian/o ptimization updating are illustrated.展开更多
Inconsistencies or conflicts appearing in the integration of ontologies and general rules are handled by applying prioritizing and updating. First, a prioritized knowledge base is obtained by weighting information wei...Inconsistencies or conflicts appearing in the integration of ontologies and general rules are handled by applying prioritizing and updating. First, a prioritized knowledge base is obtained by weighting information weight. Then, based on the idea "abandoning the old for the new", the weight of each rule is greater than that of the information in ontologies. If ontologies conflict with general rules, then a new knowledge-base without any inconsistency or conflict is obtained by using rules with big weight updating information in ontologies with small weight. Thus, current logic programming solvers and description logic reasoners are employed to implement the reasoning services, such as querying etc. Updating based on prioritizing is more suitable for handling inconsistencies than other approaches to introducing non-standard semantics if knowledge bases are dynamically evolving. Moreover, a consistent knowledge base can be always maintained in the dynamical environment by updating outdated information with new information based on weighting. Finally, this approach to dealing with inconsistencies is feasibly exemplified.展开更多
Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter scr...Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter screening using variance analysis and response surfacefitting using regression analysis. The parameter screening method selects the design parametersconsidering the result of hypothesis testing, which is a kind of global information. Meanwhile, thetraditional updating method considers local sensitivity which only gives the information at solepoint in the design space. Response surface fitting constructs a close-form multinomial whichdescribes the relationship between concerned structural feature and selected updating parameters. Itis an approximation to finite element models(FEM) and used as a substitution in the updatingiterations. The presented updating method can be applied without the restriction of linearassumption. In addition, there is no data exchange between the updating program and the finite-element analysis program in the updating iterations. This makes the method practical inengineering. An aircraft test structure, GARTEUR, is employed to verify the effectiveness of themethod. After updating, the error of modal frequencies is less than 3 percent.展开更多
Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC).Focusing on the two problems that the moment estimator of data used in cali...Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC).Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process,an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed.During calibration process,for the repeatedly-measured data obtained from experiments with different trial weights,according to the fact that measurement error of each sensor had the same statistical characteristics,the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established.During the updating process,information obtained from calibration was regarded as prior information,which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating.Moreover,Gibbs sampling method of Markov Chain Monte Carlo(MCMC)was adopted to obtain the maximum posterior estimation of parameters to be estimated.On the independent developed dynamic balancing testbed,prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively,the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy;the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process,and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.展开更多
This paper presents a framework for road network change detection in order to update the Canadian National Topographic DataBase (NTDB). The methodology has been developed on the basis of road extraction from IRS\|pan ...This paper presents a framework for road network change detection in order to update the Canadian National Topographic DataBase (NTDB). The methodology has been developed on the basis of road extraction from IRS\|pan images (with a 5.8 m spatial resolution) by using a wavelet approach. The feature matching and conflation techniques are used to road change detection and updating. Elementary experiments have showed that the proposed framework could be used for developing an operational road database updating system.展开更多
文摘The operational and regional conditions to which the prestressed concrete sleeper(PCS)is subjected in a railway track significantly contribute to its performance and durability.Maintaining the health of PCS poses challenges,and one of these issues involves the potential occurrence of longitudinal cracks in reinforcing bars,which can be caused by various constructional,functional,and environmental factors.Longitudinal cracks in PCS compromise the structural performance,resulting in a reduced capacity to withstand the loads exerted by moving vehicles.The current evaluations not only fail to yield a precise parameter for estimating the behavior and response of the PCS,but they also overlook the specific conditions of the PCS,such as prestressing,and only provide limited information regarding existing damage.Balancing the need for accurate evaluation with consideration of costs and resources,and making informed decisions about maintenance and track performance enhancement,has become a multifaceted challenge in ensuring a robust PCS assessment.This research introduces a novel methodology to improve the evaluation of mechanical and geometrical parameters of PCS over their operational lifespan.The objective is to enhance the accuracy of PCS performance estimation by concentrating on detecting longitudinal cracks.The suggested approach seamlessly integrates model updating methods and the finite element(FE)approach to achieve an accurate and timely assessment of PCS conditions.This comprehensive examination scrutinizes the methodology by applying artificial cracks to the PCS.In addition to introducing this assessment approach,a detailed examination is conducted on a laboratory-simulated PCS featuring various combinations of longitudinal cracks measuring 40,80,and 120 cm in length.This systematic and rigorous approach ensures the reliability and robustness of the methodology.Ultimately,the parameters of cross-sectional area,moment of inertia,and modulus of elasticity,which significantly impact the performance of this sleeper,are explored and demonstrated through functional methodologies.The findings suggest that assessing and addressing damage should be conducted through a comprehensive and integrated procedure,taking into account the actual conditions of the PCS.Longitudinal cracks lead to a substantial decrease in the performance of these components in railway tracks.By applying the proposed methods,it is anticipated that the evaluation error for these components will be reduced by approximately 30%compared to visual inspections,particularly in predicting the extent of damage for cracks measuring up to 120 cm.This research has the potential to significantly enhance the evaluation of PCS performance and mitigate the impact of longitudinal cracks on the safety and longevity of ballasted railway tracks in desert areas.
基金supported by the National Natural Science Foundation of China(82071498,81871046,and 32161143022)STI2030-Major Projects(2022ZD0214500).
文摘Persistent and maladaptive drug-related memories represent a key component in drug addiction.Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure(MRUP),a non-pharmacological strategy intertwining two distinct memory processes:reconsolidation and extinction—alternatively termed“the memory retrieval-extinction procedure”.This procedure presents a promising approach to attenuate,if not erase,entrenched drug memories and prevent relapse.The present review delineates the applications,molecular underpinnings,and operational boundaries of MRUP in the context of various forms of substance dependence.Furthermore,we critically examine the methodological limitations of MRUP,postulating potential refinement to optimize its therapeutic efficacy.In addition,we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction.Overall,existing studies underscore the significant potential of MRUP,suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
基金supported by the National Natural Science Foundation of China(Grant No.U23B20105).
文摘Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method for representing observational uncertainty and develops a two-step approximate Bayesian computation(ABC)framework using time-series data.Within the ABC framework,Euclidean and Bhattacharyya distances are employed as uncertainty quantification metrics to delineate approximate likelihood functions in the initial and subsequent steps,respectively.A novel variational Bayesian Monte Carlo method is introduced to efficiently apply the ABC framework amidst observational uncertainty,resulting in rapid convergence and accurate parameter estimation with minimal iterations.The efficacy of the proposed updating strategy is validated by its application to a shear frame model excited by seismic wave and an aviation pump force sensor for thermal output analysis.The results affirm the efficiency,robustness,and practical applicability of the proposed method.
文摘In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant no.12272148).
文摘A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.
基金the financial support from the National Key R&D Program of China(Grant No.2021YFC3001003)Science and Technology Development Fund,Macao SAR(File No.0056/2023/RIB2)Guangdong Provincial Department of Science and Technology(Grant No.2022A0505030019).
文摘Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-effective geophysical technique can acquire high-density data;however,uncertainty and nonuniqueness inherent in ERT impede its usage for stratigraphy identification.This paper integrates ERT and onsite observations for the first time to propose a novel method for characterizing stratigraphic profiles.The method consists of two steps:(1)ERT for prior knowledge:ERT data are processed by soft clustering using the Gaussian mixture model,followed by probability smoothing to quantify its depthdependent uncertainty;and(2)Observations for calibration:a spatial sequential Bayesian updating(SSBU)algorithm is developed to update the prior knowledge based on likelihoods derived from onsite observations,namely topsoil and boreholes.The effectiveness of the proposed method is validated through its application to a real slope site in Foshan,China.Comparative analysis with advanced borehole-driven methods highlights the superiority of incorporating ERT data in stratigraphic modeling,in terms of prediction accuracy at borehole locations and sensitivity to borehole data.Informed by ERT,reduced sensitivity to boreholes provides a fundamental solution to the longstanding challenge of sparse measurements.The paper further discusses the impact of ERT uncertainty on the proposed model using time-lapse measurements,the impact of model resolution,and applicability in engineering projects.This study,as a breakthrough in stratigraphic modeling,bridges gaps in combining geophysical and geotechnical data to address measurement sparsity and paves the way for more economical geotechnical exploration.
文摘Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.
文摘Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%.
基金supported by the Scientific and Technological Innovation Project of SHASG(SCK2022-01)National Key Research and Development Program of China(2016YFC0803109)。
文摘Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.
基金The Special Project of the Ministry of Construction ofChina (No.20060909).
文摘In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.
基金supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region(Project No.11207724).
文摘The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.
文摘A model updating optimization algorithm under quadratic constraints is applied to structure dynamic model updating. The updating problems of structure models are turned into the optimization with a quadratic constraint. Numerical method is presented by using singular value decomposition and an example is given. Compared with the other method, the method is efficient and feasible.
基金the National Natural Science Foundation of China(Nos.6136200161365013 and 51165033)+3 种基金the Natural Science Foundation of Jiangxi Province(Nos.20132BAB211030 and 20122BAB211015)the Technology Foundation of Department of Education in Jiangxi Province(Nos.GJJ 13061 and GJJ14196)the National Postdoctoral Research Funds(No.2014M551867)the Jiangxi Advanced Projects for Postdoctoral Research Funds(No.2014KY02)
文摘In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p < 1, and it penalizes small coefficients over a wider range meanwhile applies less bias to the larger coefficients.In this work, on the basis of two-level Bregman method with dictionary updating(TBMDU), we use the modified thresholding to minimize the non-convex function and propose the generalized TBMDU(GTBMDU) algorithm.The experimental results on magnetic resonance(MR) image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed algorithm can efficiently reconstruct the MR images and present advantages over the previous soft thresholding approaches.
文摘The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model that bears relation to erroneous elements only is derived.This model is termed local errors model,which reduces orders and computational loads compared with global stiffness matrix. Secondly,an inverse eigenvalue method is used to update model errors. The results of a numerical experiment demonstrate that the method is quite effective.
基金co-supported by National Natural Science Foundation of China(Nos.51975124 and 51675179)Shanghai International Cooperation Project of One Belt and One Road of China(No.20110741700)Research Startup Fund of Fudan University(No.FDU38341)。
文摘For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes.
基金The financial supports provided by the Research Grants Council(RGC)of Hong Kong Special Administrative Region Government(HKSARG)of China(Grant Nos.15209119 and PolyU R5037-18F)Zhongtian Construction Group Co.Ltd.(Grant No.ZTCG-GDJTYJSJSFW-2020002)。
文摘This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU) neural network is adopted to formulate the forecast model and learn the potential rules in the field observations using the Nesterov-accelerated Adam(Nadam) algorithm.In the proposed procedure,the GRU-based forecast model is first trained based on the field data of previous and current stages.Then,the field data of the current stage are used as input to predict the deformation response of the next stage via the previously trained GRU-based forecast model.This updating process will loop up till the end of the excavation.This procedure has the advantage of directly predicting the deformation response of unexcavated stages based on the monitoring data.The proposed intelligent procedure is verified on two well-documented cases in terms of accuracy and reliability.The results indicate that both wall deflection and ground settlement are accurately predicted as the excavation proceeds.Furthermore,the advantages of the proposed intelligent procedure compared with the Bayesian/o ptimization updating are illustrated.
基金The National Natural Science Foundation of China (No60973003)
文摘Inconsistencies or conflicts appearing in the integration of ontologies and general rules are handled by applying prioritizing and updating. First, a prioritized knowledge base is obtained by weighting information weight. Then, based on the idea "abandoning the old for the new", the weight of each rule is greater than that of the information in ontologies. If ontologies conflict with general rules, then a new knowledge-base without any inconsistency or conflict is obtained by using rules with big weight updating information in ontologies with small weight. Thus, current logic programming solvers and description logic reasoners are employed to implement the reasoning services, such as querying etc. Updating based on prioritizing is more suitable for handling inconsistencies than other approaches to introducing non-standard semantics if knowledge bases are dynamically evolving. Moreover, a consistent knowledge base can be always maintained in the dynamical environment by updating outdated information with new information based on weighting. Finally, this approach to dealing with inconsistencies is feasibly exemplified.
基金This project is supported by National Natural Science Foundation of China (No. 20010227012)
文摘Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter screening using variance analysis and response surfacefitting using regression analysis. The parameter screening method selects the design parametersconsidering the result of hypothesis testing, which is a kind of global information. Meanwhile, thetraditional updating method considers local sensitivity which only gives the information at solepoint in the design space. Response surface fitting constructs a close-form multinomial whichdescribes the relationship between concerned structural feature and selected updating parameters. Itis an approximation to finite element models(FEM) and used as a substitution in the updatingiterations. The presented updating method can be applied without the restriction of linearassumption. In addition, there is no data exchange between the updating program and the finite-element analysis program in the updating iterations. This makes the method practical inengineering. An aircraft test structure, GARTEUR, is employed to verify the effectiveness of themethod. After updating, the error of modal frequencies is less than 3 percent.
基金supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2008 AA04Z114)
文摘Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC).Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process,an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed.During calibration process,for the repeatedly-measured data obtained from experiments with different trial weights,according to the fact that measurement error of each sensor had the same statistical characteristics,the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established.During the updating process,information obtained from calibration was regarded as prior information,which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating.Moreover,Gibbs sampling method of Markov Chain Monte Carlo(MCMC)was adopted to obtain the maximum posterior estimation of parameters to be estimated.On the independent developed dynamic balancing testbed,prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively,the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy;the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process,and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.
文摘This paper presents a framework for road network change detection in order to update the Canadian National Topographic DataBase (NTDB). The methodology has been developed on the basis of road extraction from IRS\|pan images (with a 5.8 m spatial resolution) by using a wavelet approach. The feature matching and conflation techniques are used to road change detection and updating. Elementary experiments have showed that the proposed framework could be used for developing an operational road database updating system.