The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ...The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.展开更多
As important natural and pharmaceutical motifs,the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations.Herein,we developed a simple an...As important natural and pharmaceutical motifs,the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations.Herein,we developed a simple and divergent approach for constructing reverse-prenylated and prenylated oxindoles launched by Ni catalysis with bulk chemical isoprene.Using C3-unsubstituted oxindoles as starting materials,mono reverse-prenylation was demonstrated in high chemo-and regioselectivities facilitated by the combination of Ni(0)and monodentate phosphine ligand.Using the obtained reverse-prenylated oxindoles as versatile synthon,substitutions at the pseudobenzylic position with various electrophiles created vicinal quaternary centers in a concise way.With the help of additives(PPh3 and NaH),air could be directly used as green oxidant to construct prenylated and reverse-prenylatedα-hydroxy-oxindoles divergently from the same substrates.In situ esterification of prenylatedα-hydroxy-oxindoles allowed subsequent Friedel-Crafts substitutions with diverse nucleophiles to deliver prenyl substituted dimeric or spiro-oxindoles.This protocol provides a divergent synthetic approach for the construction of highly functionalized 3,3-disubstituted oxindoles,which have been otherwise difficult to access in a unified approach.展开更多
Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-sof...Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.展开更多
Vehicle recognition plays a vital role in intelligent transportation systems,law enforcement,access control,and security operations—domains that are becoming increasingly dynamic and complex.Despite advancements,most...Vehicle recognition plays a vital role in intelligent transportation systems,law enforcement,access control,and security operations—domains that are becoming increasingly dynamic and complex.Despite advancements,most existing solutions remain siloed,addressing individual tasks such as vehicle make and model recognition(VMMR),automatic number plate recognition(ANPR),and color classification separately.This fragmented approach limits real-world efficiency,leading to slower processing,reduced accuracy,and increased operational costs,particularly in traffic monitoring and surveillance scenarios.To address these limitations,we present a unified framework that consolidates all three recognition tasks into a single,lightweight system.The framework utilizes MobileNetV2 for efficient VMMR,YOLO(You Only Look Once)for accurate license plate detection,and histogram-based clustering in the HSV color space for precise color identification.Rather than optimizing each module in isolation,our approach emphasizes tight integration,enabling improved performance and reliability.The system also features adaptive image calibration and robust algorithmic enhancements to ensure consistent results under varying environmental conditions.Experimental evaluations demonstrate that the proposedmodel achieves a combined accuracy of 93.3%,outperforming traditional methods and offering practical scalability for deployment in real-world transportation infrastructures.展开更多
Complex numbers play a pivotal role in both mathematics and physics,particularly in quantum mechanics,and are extensively utilized to depict the behavior of microscopic particles.Recognizing the significance of comple...Complex numbers play a pivotal role in both mathematics and physics,particularly in quantum mechanics,and are extensively utilized to depict the behavior of microscopic particles.Recognizing the significance of complex numbers,a framework of imaginarity resource theory has recently been established.In this work,we propose two types of imaginarity monotones induced by the unified(α,β)-relative entropy and investigate their properties.Moreover,we give explicit examples to illustrate our results.展开更多
Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems ...Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems can be better characterized by considering the related nonlinear time series from the perspective of networks science.In this paper,the associated network family of the unified piecewise-linear(PWL)chaotic family,which can bridge the gap of the PWL chaotic Lorenz system and the PWL chaotic Chen system,was firstly constructed and analyzed.We constructed the associated network family via the original and the modified frequency-degree mapping strategy,as well as the classical visibility graph and horizontal visibility graph strategy,after removing the transient states.Typical related network characteristics,including the network fractal dimension,of the associated network family,are computed with changes of single key parameter a.These characteristic vectors of the network are also compared with the largest Lyapunov exponent(LLE)vector of the related original dynamical system.It can be found that,some network characteristics are highly correlated with LLE vector of the original nonlinear system,i.e.,there is an internal consistency between the largest Lyapunov exponents,some typical associated network characteristics,and the related network fractal dimension index.Numerical results show that the modified frequency-degree mapping strategy can demonstrate highest correlation,which means it can behave better to capture the intrinsic characteristics of the unified PWL chaotic family.展开更多
1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation ...1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation platforms are essential in this area,as they simulate agent behaviors in set environments and tasks,thereby accelerating algorithm validation and optimization.However,constructing such a platform presents several challenges.展开更多
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th...Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.展开更多
The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition a...The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...展开更多
The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. Th...The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.展开更多
This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model...This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model, which is used to assess the microstructural deformation of materials. The usage of the submodel technique in the analysis makes it possible to shed light on the stress and strain field at the microlevel. This is helpful to investigate the linkage between the microscopic and the macroscopic flow behavior of the composites. An iterative procedure is also proposed to find out the optimum parameters. The results show that the convergence can be attained after three iterations in computation. In order to demonstrate the reliability of mi- cro-macro unified model, results based on the continuum composite model are also investigated using the stress-strain relation of composite obtained from the iterations. By comparing the proposed unified model to the continuum composite model, it is clear that the former exhibits large plastic deformation in the case of little macroscopic deformation, and the stresses and strains obtained from the submodel are higher than those from the macroscopic deformation.展开更多
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc...The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.展开更多
The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. Ho...The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.展开更多
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone...A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed.展开更多
Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. ...Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.展开更多
In order to study the mechanism of bearing behavior at the tip of a pile embedded in rock, the generalized nonlinear unified strength criterion and slip line principle for resolving the differential equation systems w...In order to study the mechanism of bearing behavior at the tip of a pile embedded in rock, the generalized nonlinear unified strength criterion and slip line principle for resolving the differential equation systems which govern the stress field were applied to derive the ultimate end beating capacity based on some reasonable hypothesis and failure plane model. Both numerical simulation and test results were compared with the theoretic solution. The results show good consistency with each other and verify the validity of the present approach. The depth effect with respective to embedment ratio and other influence factors like geological strength index, intermediate principal stress, overburden factor, and damage on end bearing capacity were discussed in the analytical solution. The results show that the proposed yield criterion can be much better for investigating the ultimate end bearing performance of rock-socketed pile. The end bearing capacity increases with embedment ratio and the increasing degree is influenced intensely by the above parameters. Furthermore, ignoring intermediate stress effect would underestimate the strength properties of the rock material and lead to a very conservative estimation value.展开更多
Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the exi...Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.展开更多
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+2 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(Leading Fund(2023)09)supported by the Natural Science Research Fund of Guizhou University,ChinaProject(JYBSYS2021101)supported by the Open Fund of Key Laboratory of Safe and Effective Coal Mining,Ministry of Education,China。
文摘The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.
文摘As important natural and pharmaceutical motifs,the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations.Herein,we developed a simple and divergent approach for constructing reverse-prenylated and prenylated oxindoles launched by Ni catalysis with bulk chemical isoprene.Using C3-unsubstituted oxindoles as starting materials,mono reverse-prenylation was demonstrated in high chemo-and regioselectivities facilitated by the combination of Ni(0)and monodentate phosphine ligand.Using the obtained reverse-prenylated oxindoles as versatile synthon,substitutions at the pseudobenzylic position with various electrophiles created vicinal quaternary centers in a concise way.With the help of additives(PPh3 and NaH),air could be directly used as green oxidant to construct prenylated and reverse-prenylatedα-hydroxy-oxindoles divergently from the same substrates.In situ esterification of prenylatedα-hydroxy-oxindoles allowed subsequent Friedel-Crafts substitutions with diverse nucleophiles to deliver prenyl substituted dimeric or spiro-oxindoles.This protocol provides a divergent synthetic approach for the construction of highly functionalized 3,3-disubstituted oxindoles,which have been otherwise difficult to access in a unified approach.
基金Projects(52208382, 52278387, 51738002) supported by the National Natural Science Foundation of ChinaProject(2022YJS072) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.
基金supported in part by Multimedia University Research Fellow under Grant MMUI/250008in part by Telekom Research and Development Sdn Bhd under Grant RDTC/241149.
文摘Vehicle recognition plays a vital role in intelligent transportation systems,law enforcement,access control,and security operations—domains that are becoming increasingly dynamic and complex.Despite advancements,most existing solutions remain siloed,addressing individual tasks such as vehicle make and model recognition(VMMR),automatic number plate recognition(ANPR),and color classification separately.This fragmented approach limits real-world efficiency,leading to slower processing,reduced accuracy,and increased operational costs,particularly in traffic monitoring and surveillance scenarios.To address these limitations,we present a unified framework that consolidates all three recognition tasks into a single,lightweight system.The framework utilizes MobileNetV2 for efficient VMMR,YOLO(You Only Look Once)for accurate license plate detection,and histogram-based clustering in the HSV color space for precise color identification.Rather than optimizing each module in isolation,our approach emphasizes tight integration,enabling improved performance and reliability.The system also features adaptive image calibration and robust algorithmic enhancements to ensure consistent results under varying environmental conditions.Experimental evaluations demonstrate that the proposedmodel achieves a combined accuracy of 93.3%,outperforming traditional methods and offering practical scalability for deployment in real-world transportation infrastructures.
基金supported by National Natural Science Foundation of China(Grant No.12161056)Natural Science Foundation of Jiangxi Province(Grant No.20232ACB211003)。
文摘Complex numbers play a pivotal role in both mathematics and physics,particularly in quantum mechanics,and are extensively utilized to depict the behavior of microscopic particles.Recognizing the significance of complex numbers,a framework of imaginarity resource theory has recently been established.In this work,we propose two types of imaginarity monotones induced by the unified(α,β)-relative entropy and investigate their properties.Moreover,we give explicit examples to illustrate our results.
文摘Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems can be better characterized by considering the related nonlinear time series from the perspective of networks science.In this paper,the associated network family of the unified piecewise-linear(PWL)chaotic family,which can bridge the gap of the PWL chaotic Lorenz system and the PWL chaotic Chen system,was firstly constructed and analyzed.We constructed the associated network family via the original and the modified frequency-degree mapping strategy,as well as the classical visibility graph and horizontal visibility graph strategy,after removing the transient states.Typical related network characteristics,including the network fractal dimension,of the associated network family,are computed with changes of single key parameter a.These characteristic vectors of the network are also compared with the largest Lyapunov exponent(LLE)vector of the related original dynamical system.It can be found that,some network characteristics are highly correlated with LLE vector of the original nonlinear system,i.e.,there is an internal consistency between the largest Lyapunov exponents,some typical associated network characteristics,and the related network fractal dimension index.Numerical results show that the modified frequency-degree mapping strategy can demonstrate highest correlation,which means it can behave better to capture the intrinsic characteristics of the unified PWL chaotic family.
基金supported by the National Natural Science Foundation of China(Grant No.62322601).
文摘1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation platforms are essential in this area,as they simulate agent behaviors in set environments and tasks,thereby accelerating algorithm validation and optimization.However,constructing such a platform presents several challenges.
基金supported By Grant (PLN2022-14) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)。
文摘Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.
文摘The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...
基金The Project of the Ministry of Housing and Urban-Rural Development(No.2014-K4-010)
文摘The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.
基金Aeronautical Basic Science Foundation of China (03H53048)
文摘This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model, which is used to assess the microstructural deformation of materials. The usage of the submodel technique in the analysis makes it possible to shed light on the stress and strain field at the microlevel. This is helpful to investigate the linkage between the microscopic and the macroscopic flow behavior of the composites. An iterative procedure is also proposed to find out the optimum parameters. The results show that the convergence can be attained after three iterations in computation. In order to demonstrate the reliability of mi- cro-macro unified model, results based on the continuum composite model are also investigated using the stress-strain relation of composite obtained from the iterations. By comparing the proposed unified model to the continuum composite model, it is clear that the former exhibits large plastic deformation in the case of little macroscopic deformation, and the stresses and strains obtained from the submodel are higher than those from the macroscopic deformation.
基金the Joint Fund of the National Natural Science Foundation of China under funding number of U19B6003-02-04the fund of A Theoretical Study of Marine Petroliferous System,Sichuan Basin,and the Science Foundation of China University of Petroleum,Beijing under funding number of 2462020BJRC005.
文摘The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.
基金supported by the National Natural Science Foundation of China (No’s. 51575448 and 51135007)
文摘The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.
基金Project(51378309)supported by National Natural Science Foundation of China
文摘A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed.
基金Project (No.SJ08E204) supported by the Natural Science Foundation of Shanxi Province,China
文摘Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.
基金Project(2007AA11Z134) supported by the National High-tech Research and Development Program of ChinaProject(10JJ4035) supported by Hunan Provincial Natural Science Foundation of ChinaProject(04SK2008) supported by Hunan Provincial Science and Technology Department,China
文摘In order to study the mechanism of bearing behavior at the tip of a pile embedded in rock, the generalized nonlinear unified strength criterion and slip line principle for resolving the differential equation systems which govern the stress field were applied to derive the ultimate end beating capacity based on some reasonable hypothesis and failure plane model. Both numerical simulation and test results were compared with the theoretic solution. The results show good consistency with each other and verify the validity of the present approach. The depth effect with respective to embedment ratio and other influence factors like geological strength index, intermediate principal stress, overburden factor, and damage on end bearing capacity were discussed in the analytical solution. The results show that the proposed yield criterion can be much better for investigating the ultimate end bearing performance of rock-socketed pile. The end bearing capacity increases with embedment ratio and the increasing degree is influenced intensely by the above parameters. Furthermore, ignoring intermediate stress effect would underestimate the strength properties of the rock material and lead to a very conservative estimation value.
基金Project(2017M622540)supported by the China Postdoctoral Science FoundationProject(51808419)supported by the National Natural Science Foundation of China+1 种基金Project(2019CFB217)supported by the National Natural Science Foundation of Hubei Province,ChinaProject(201623)supported by the Science and Technology Project of Wuhan Urban and Rural Construction Committee,China。
文摘Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.