Incubation experiments have shown that ultra- violet radiation (UVR) has significant influences on marine primary production (MPP). However, existing satellite remote sensing models of MPP only consider the effect...Incubation experiments have shown that ultra- violet radiation (UVR) has significant influences on marine primary production (MPP). However, existing satellite remote sensing models of MPP only consider the effects of visible light radiation, ignoring the UVR. Additionally, the ocean color satellite data currently used for MPP estimation contain no UV bands. To better understand the mechanism of MPP model development with reference to satellite remote sensing, including UVR's effects, we first reviewed recent studies of UVR's effects on phytoplankton and MPP, which highlights the need for improved satellite remote sensing of MPP. Then, based on current MPP models using visible radiation, we discussed the quantitative methods used to implement three key model variables related to UVR: the UVR intensity at the sea surface, the attenuation of UVR in the euphotic layer, and the maximum or optimal photosynthetic rate, con- sidering the effects of UVR. The implementation of these UVR-related variables could be useful in further assessing UVR's effects on the remote sensing of MPP, and in re- evaluating our existing knowledge of MPP estimation at large spatial scales and long-time scales related to global change.展开更多
文摘Incubation experiments have shown that ultra- violet radiation (UVR) has significant influences on marine primary production (MPP). However, existing satellite remote sensing models of MPP only consider the effects of visible light radiation, ignoring the UVR. Additionally, the ocean color satellite data currently used for MPP estimation contain no UV bands. To better understand the mechanism of MPP model development with reference to satellite remote sensing, including UVR's effects, we first reviewed recent studies of UVR's effects on phytoplankton and MPP, which highlights the need for improved satellite remote sensing of MPP. Then, based on current MPP models using visible radiation, we discussed the quantitative methods used to implement three key model variables related to UVR: the UVR intensity at the sea surface, the attenuation of UVR in the euphotic layer, and the maximum or optimal photosynthetic rate, con- sidering the effects of UVR. The implementation of these UVR-related variables could be useful in further assessing UVR's effects on the remote sensing of MPP, and in re- evaluating our existing knowledge of MPP estimation at large spatial scales and long-time scales related to global change.