The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle disperse...The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.展开更多
Foreshock ultralow frequency (ULF) waves constitute a significant physical phenomenon in the plasma environment of terrestrial planets. The occurrence of these waves, associated with backstreaming particles reflected ...Foreshock ultralow frequency (ULF) waves constitute a significant physical phenomenon in the plasma environment of terrestrial planets. The occurrence of these waves, associated with backstreaming particles reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using magnetic field and ion measurements from MAVEN, we report a clear event of ULF waves in the Martian foreshock. The interplanetary magnetic field connected to the Martian bow shock, forming a shock angle of ~51°. Indicating that this was a fast mode wave is the fact that ion density varied in phase with perturbations of the wave field. The peak frequency of the waves was about 0.040 Hz in the spacecraft frame, much lower than the local proton gyrofrequency (~0.088 Hz). The ULF waves had a propagation angle approximately 34° from ambient magnetic field and were accompanied by the whistler mode. The ULF waves displayed left-hand elliptical polarization with respect to the interplanetary magnetic field in the spacecraft frame. All these properties fit very well with foreshock waves excited by interactions between solar wind and backstreaming ions through right-hand beam instability.展开更多
A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magne...A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magni-tude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distri-bution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.展开更多
Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major...Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of "killer" electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is considered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth’s magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to accelerate electrons to relativistic energies, is too long to explain our observations. Furthermore, we have found that interplanetary shocks or solar wind pressure pulses, with even small dynamic pressure changes, can play a non-negligible role in radiation belt dynamics. Interplanetary shocks interaction with the Earth’s magnetosphere manifests many fundamental space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt responding to interplanetary shock impacts consists of three contributing parts: (1) the initial adiabatic acceleration due to strong shock-related magnetic field compression; (2) followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to the quickly damping electric fields associated with ULF waves. Particles end up with a net acceleration because they gain more energy in the first half of this cycle than they lose in the second. The results reported in this paper cast a new light on understanding the acceleration of energetic particles in the Earth’s Van Allen radiation belt. The results of this study can likewise be applied to interplanetary shock interaction with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.展开更多
Based on observations obtained by Cluster C1, GOES 10, 12, and Polar, the global ULF wave properties are studied during the recovery phase of a very intense magnetic storm-Halloween storm (October 31, 2003, 21:00–23:...Based on observations obtained by Cluster C1, GOES 10, 12, and Polar, the global ULF wave properties are studied during the recovery phase of a very intense magnetic storm-Halloween storm (October 31, 2003, 21:00–23:00 UT). The results indicate that the ULF waves’ properties observed by different satellites, such as amplitude, period, etc. show large variations. This can be interpreted as that Field Line Resonance (FLR) might take place in the region where Cluster C1 passed. The compressional wave of the cavity mode coupled with FLR’s shear Alfven wave and fed energy to the latter, forming a large-amplitude toroidal mode. From the point of period, Cluster C1 observed the shortest period, GOES 10, 12 observed the middle, while Polar observed the longest. The wave period of toroidal mode observed by Cluster C1 kept almost unchanging when Cluster C1 passed L range from 11.7 to 5.3. Using the Squared Wavelet Coherence analysis method, we estimated that the FLR region in the dayside magnetosphere could expand to at least 4 local time widths. The toroidal mode observed by Polar was a standing wave, while the poloidal mode was a propagating wave, the observation results could be well explained by the waveguide mode theory. Since the solarwind speed V <SUB>x</SUB> was −800 km/s and the dynamic pressure varied little, we speculated that the source of the ULF wave was the Kelvin-Helmholtz instability at the magnetopause triggered by high speed solarwind.展开更多
The global distribution properties of Ultra Low Frequency wave (ULF) in the inner magnetospgere and its interactions with energetic particles, such as the wave-particle resonance, modulation, and particle acceleration...The global distribution properties of Ultra Low Frequency wave (ULF) in the inner magnetospgere and its interactions with energetic particles, such as the wave-particle resonance, modulation, and particle acceleration, are active topics in space physics research. These problems are fundamentally important issues to understand the energy transport from the solar wind into the magnetosphere. In this paper we briefly reviewed the recent research progress on ULF wave and its interactions with energetic particles in the inner magnetosphere; furthermore, we suggested some open questions for future study.展开更多
The sources of ultra low frequency (ULF) waves in the magnetosphere are generally believed to be either the external solar wind perturbations or the internal plasma instabilities. When a sudden impulse of the solar wi...The sources of ultra low frequency (ULF) waves in the magnetosphere are generally believed to be either the external solar wind perturbations or the internal plasma instabilities. When a sudden impulse of the solar wind dynamic pressure impinges on the magnetopause, ULF waves might be excited and thus the solar wind energy is transported into the earth's magnetosphere. In this paper, we study the ULF waves excited by different kinds of sudden solar wind pressure impulses through an MHD simulation. We primarily focus on the responses of the earth's magnetosphere to positive/negative impulses of solar wind dynamic pressure, and positive-negative impulse pairs. The simulation results show that the ULF waves excited by positive and negative impulse have the same amplitude and frequency, with 180° difference in phase, if the amplitude and durations of the input impulses are the same. In addition, it is found that field line resonances (FLRs) occur at certain L-shell regions of the earth's magneto-sphere after the impact of different positive-negative impulse pairs, which appear to be related to the duration of the impulses and the time interval between the sequential impulses. Another result is that the energy from the solar wind could be transported deeper into the inner magnetosphere by an impulse pair than by a single pulse impact. The results presented in this paper could help us to better understand how energy is transported from solar wind to the earth's magnetosphere via ULF waves. Also, these results provide some new clues to understanding of how energetic particles in the inner magnetosphere response to different kinds of solar wind pressure impulse impacts including inter-planetary shocks.展开更多
This study reports the rare ultralow-frequency(ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17(Geostationary Operational Environmental Satel...This study reports the rare ultralow-frequency(ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17(Geostationary Operational Environmental Satellite) in the magnetosphere, the CSES(China Seismo-Electromagnetic Satellite) in the ionosphere, and the THEMIS ground-based observatories(GBO) GAKO and EAGL in the Earth's polar region during the main phase of an intense storm on 4 November 2021. Along with the enhanced-pressure solar wind moving tailward, the geomagnetic field structure experienced a large-scale change. From dawn/dusk sides to midnight, the GAKO, EAGL, and GOES-17 sequentially observed the ULF waves in a frequency range of0.04–0.36 Hz at L shells of ~5.07, 6.29, and 5.67, respectively. CSES also observed the ULF wave event with the same frequency ranges at wide L-shells of 2.52–6.22 in the nightside ionosphere. The analysis results show that the ULF waves at ionospheric altitude were mixed toroidal-poloidal mode waves. Comparing the ULF waves observed in different regions, we infer that the nightside ULF waves were directly or indirectly excited by the solar wind dynamic pressure increase: in the area of L-shells~2.52–6.29, the magnetic field line resonances(FLRs) driven by the solar wind dynamic pressure increase is an essential excitation source;on the other hand, around L~3.29, the ULF waves can also be excited by the outward expansion of the plasmapause owing to the decrease of the magnetospheric convection, and in the region of L-shells ~5.19–6.29, the ULF waves are also likely excited by the ion cyclotron instabilities driven by the solar wind dynamic pressure increase.展开更多
There has been enormous progress in the field of electromagnetic phenomena associated with earthquakes (EQs) and EQ prediction during the last three decades, and it is recently agreed that electromagnetic effects do a...There has been enormous progress in the field of electromagnetic phenomena associated with earthquakes (EQs) and EQ prediction during the last three decades, and it is recently agreed that electromagnetic effects do appear prior to an EQ. A few phenomena are well recognized as being statistically correlated with EQs as promising candidates for short-term EQ predictors: the first is ionospheric perturbation not only in the lower ionosphere as seen by subionospheric VLF (very low frequency, 3 kHz f 30 kHz)/LF (low frequency, 30 kHz f 300 kHz) propagation but also in the upper F region as detected by ionosondes, TEC (total electron content) observations, satellite observations, etc, and the second is DC earth current known as SES (Seismic electric signal). In addition to the above two physical phenomena, this review highlights the following four physical wave phenomena in ULF (ultra low frequency, frequency Hz)/ELF (extremely low frequency, 3 Hz frequency 3 kHz) ranges, including 1) ULF lithospheric radiation (i.e., direct radiation from the lithosphere), 2) ULF magnetic field depression effect (as an indicator of lower ionospheric perturbation), 3) ULF/ELF electromagnetic radiation (radiation in the atmosphere), and 4) Schumann resonance (SR) anomalies (as an indicator of the perturbations in the lower ionosphere and stratosphere). For each physical item, we will repeat the essential points and also discuss recent advances and future perspectives. For the purpose of future real EQ prediction practice, we pay attention to the statistical correlation of each phenomenon with EQs, and its predictability in terms of probability gain. Of course, all of those effects are recommended as plausible candidates for short-term EQ prediction, and they can be physically explained in terms of the unified concept of the lithosphere-atmosphere-ionosphere coupling (LAIC) process, so a brief description of this coupling has been carried out by using these four physical parameters though the mechanism of each phenomenon is still poorly understood. In conclusion, we have to emphasize the importance of more statistical studies for more abundant datasets sometimes with the use of AI (artificial intelligence) techniques, more case studies for huge (M greater than 7) EQ events, recommendation of critical analyses, and finally multi-parameters observation (even though it is tough work).展开更多
磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到...磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到。频率分析显示,ULF波的周期、质子各向异性周期和EMIC波包的周期非常接近。MMS-4卫星在约1 h后经过附近空间区域,研究发现随着ULF波的幅度减弱,EMIC波包的准周期性也逐渐减弱。研究结果为ULF波在日侧外磁层调制质子各向异性从而产生周期性EMIC波包提供了完整的观测证据链。同时,观测结果进一步证明,这种ULF波调制的EMIC波包能够在大于2Re的空间尺度内发生,且能够持续存在于几个小时以上的时间尺度。展开更多
In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a ...In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a recurrence time of a few minutes. The validation of this scenario requires spacecraft observations of ultra-low-frequency hydromagnetic waves in the magnetosphere and simultaneous observations of poleward-moving auroral arcs near the spacecraft footprints. Here we present the first observational evidence from the multi-spacecraft THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission and the conjugated all-sky imager to support the scenario that standing hydromagnetic waves can generate the quasi-periodic appearance of poleward-moving auroral arcs. In this specific event, the observed waves were toroidal branches of the standing hydromagnetic waves, which were excited by a pulse in the solar wind dynamic pressure. Multi-spacecraft measurements from THEMIS also suggest higher wave frequencies at lower L shells (consistent with the distribution of magnetic field line eigenfrequencies), which indicates that the phase difference across latitudes would increase with time. As time proceeds, the enlarged phase difference corresponds to a lower propagation speed of the auroral arcs, which agrees very well with the ground-based optical data.展开更多
Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performin...Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performing a detailed event study in terms of particle distribution maps and wave–particle variable correlation maps, we report that ULF waves observed by the Mars Atmosphere and Volatile EvolutioN(MAVEN) spacecraft in the Martian foreshock can effectively modulate the suprathermal electron fluxes by the magnetic field fluctuations. In particular, the variations in electron fluxes at energies of ~10–100 eV are significant in the perpendicular direction, showing good relationships with changes in the wave field strength characterized by a correlation coefficient ~0.8. These findings demonstrate the generality of interactions of ULF waves with electrons, even at these low energies, highlighting the importance of such processes throughout the heliosphere.展开更多
基金supported by National Natural Science Foundation of China National Natural Science Foundation of China (41421003 and 41627805)
文摘The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.
基金supported by the National Key Research and Development Program of China (2016YFB0501300, 2016YFB0501304)the National Natural Science Foundation of China (Grants No.41774187, 41674168, 41774176)+2 种基金Beijing Municipal Science and Technology Commission (Grant No.Z191100004319001)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA14040404)the pre-research Project on Civil Aerospace Technologies No.D020103 funded by CNSA
文摘Foreshock ultralow frequency (ULF) waves constitute a significant physical phenomenon in the plasma environment of terrestrial planets. The occurrence of these waves, associated with backstreaming particles reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using magnetic field and ion measurements from MAVEN, we report a clear event of ULF waves in the Martian foreshock. The interplanetary magnetic field connected to the Martian bow shock, forming a shock angle of ~51°. Indicating that this was a fast mode wave is the fact that ion density varied in phase with perturbations of the wave field. The peak frequency of the waves was about 0.040 Hz in the spacecraft frame, much lower than the local proton gyrofrequency (~0.088 Hz). The ULF waves had a propagation angle approximately 34° from ambient magnetic field and were accompanied by the whistler mode. The ULF waves displayed left-hand elliptical polarization with respect to the interplanetary magnetic field in the spacecraft frame. All these properties fit very well with foreshock waves excited by interactions between solar wind and backstreaming ions through right-hand beam instability.
基金the National Natural Science Foundation of China (Grant Nos. 40425004 and 40528005)the Major State Basic Research De-velopment Program of China (973 Program) (Grant No. 2006CB806305)
文摘A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magni-tude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distri-bution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.
基金supported by the National Natural Science Foundation of China (40831061 and 41074117)the Specialized Research Fund for State Key Laboratories
文摘Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of "killer" electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is considered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth’s magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to accelerate electrons to relativistic energies, is too long to explain our observations. Furthermore, we have found that interplanetary shocks or solar wind pressure pulses, with even small dynamic pressure changes, can play a non-negligible role in radiation belt dynamics. Interplanetary shocks interaction with the Earth’s magnetosphere manifests many fundamental space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt responding to interplanetary shock impacts consists of three contributing parts: (1) the initial adiabatic acceleration due to strong shock-related magnetic field compression; (2) followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to the quickly damping electric fields associated with ULF waves. Particles end up with a net acceleration because they gain more energy in the first half of this cycle than they lose in the second. The results reported in this paper cast a new light on understanding the acceleration of energetic particles in the Earth’s Van Allen radiation belt. The results of this study can likewise be applied to interplanetary shock interaction with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.
基金the National Natural Science Foundation of China(Grant Nos. 40425004, 40528005, 40390152)the National Basic Research Program of China (Grant No. 2006CB806305)
文摘Based on observations obtained by Cluster C1, GOES 10, 12, and Polar, the global ULF wave properties are studied during the recovery phase of a very intense magnetic storm-Halloween storm (October 31, 2003, 21:00–23:00 UT). The results indicate that the ULF waves’ properties observed by different satellites, such as amplitude, period, etc. show large variations. This can be interpreted as that Field Line Resonance (FLR) might take place in the region where Cluster C1 passed. The compressional wave of the cavity mode coupled with FLR’s shear Alfven wave and fed energy to the latter, forming a large-amplitude toroidal mode. From the point of period, Cluster C1 observed the shortest period, GOES 10, 12 observed the middle, while Polar observed the longest. The wave period of toroidal mode observed by Cluster C1 kept almost unchanging when Cluster C1 passed L range from 11.7 to 5.3. Using the Squared Wavelet Coherence analysis method, we estimated that the FLR region in the dayside magnetosphere could expand to at least 4 local time widths. The toroidal mode observed by Polar was a standing wave, while the poloidal mode was a propagating wave, the observation results could be well explained by the waveguide mode theory. Since the solarwind speed V <SUB>x</SUB> was −800 km/s and the dynamic pressure varied little, we speculated that the source of the ULF wave was the Kelvin-Helmholtz instability at the magnetopause triggered by high speed solarwind.
基金the National Natural Science Foundation of China (Grant Nos. 40528005 and 40390152)
文摘The global distribution properties of Ultra Low Frequency wave (ULF) in the inner magnetospgere and its interactions with energetic particles, such as the wave-particle resonance, modulation, and particle acceleration, are active topics in space physics research. These problems are fundamentally important issues to understand the energy transport from the solar wind into the magnetosphere. In this paper we briefly reviewed the recent research progress on ULF wave and its interactions with energetic particles in the inner magnetosphere; furthermore, we suggested some open questions for future study.
基金Supported by the National Natural Science Foundation of China (Grant No. 40831061)
文摘The sources of ultra low frequency (ULF) waves in the magnetosphere are generally believed to be either the external solar wind perturbations or the internal plasma instabilities. When a sudden impulse of the solar wind dynamic pressure impinges on the magnetopause, ULF waves might be excited and thus the solar wind energy is transported into the earth's magnetosphere. In this paper, we study the ULF waves excited by different kinds of sudden solar wind pressure impulses through an MHD simulation. We primarily focus on the responses of the earth's magnetosphere to positive/negative impulses of solar wind dynamic pressure, and positive-negative impulse pairs. The simulation results show that the ULF waves excited by positive and negative impulse have the same amplitude and frequency, with 180° difference in phase, if the amplitude and durations of the input impulses are the same. In addition, it is found that field line resonances (FLRs) occur at certain L-shell regions of the earth's magneto-sphere after the impact of different positive-negative impulse pairs, which appear to be related to the duration of the impulses and the time interval between the sequential impulses. Another result is that the energy from the solar wind could be transported deeper into the inner magnetosphere by an impulse pair than by a single pulse impact. The results presented in this paper could help us to better understand how energy is transported from solar wind to the earth's magnetosphere via ULF waves. Also, these results provide some new clues to understanding of how energetic particles in the inner magnetosphere response to different kinds of solar wind pressure impulse impacts including inter-planetary shocks.
基金supported by the National Key Research and Development Program of China (Grant No. 2023YFE0117300)the National Natural Science Foundation of China (Grant No. 4187417)the APSCO Earthquake Research Project Phase Ⅱ, and the Dragon 5 Cooperation 2020-2024 (Grant No. 59236)。
文摘This study reports the rare ultralow-frequency(ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17(Geostationary Operational Environmental Satellite) in the magnetosphere, the CSES(China Seismo-Electromagnetic Satellite) in the ionosphere, and the THEMIS ground-based observatories(GBO) GAKO and EAGL in the Earth's polar region during the main phase of an intense storm on 4 November 2021. Along with the enhanced-pressure solar wind moving tailward, the geomagnetic field structure experienced a large-scale change. From dawn/dusk sides to midnight, the GAKO, EAGL, and GOES-17 sequentially observed the ULF waves in a frequency range of0.04–0.36 Hz at L shells of ~5.07, 6.29, and 5.67, respectively. CSES also observed the ULF wave event with the same frequency ranges at wide L-shells of 2.52–6.22 in the nightside ionosphere. The analysis results show that the ULF waves at ionospheric altitude were mixed toroidal-poloidal mode waves. Comparing the ULF waves observed in different regions, we infer that the nightside ULF waves were directly or indirectly excited by the solar wind dynamic pressure increase: in the area of L-shells~2.52–6.29, the magnetic field line resonances(FLRs) driven by the solar wind dynamic pressure increase is an essential excitation source;on the other hand, around L~3.29, the ULF waves can also be excited by the outward expansion of the plasmapause owing to the decrease of the magnetospheric convection, and in the region of L-shells ~5.19–6.29, the ULF waves are also likely excited by the ion cyclotron instabilities driven by the solar wind dynamic pressure increase.
文摘There has been enormous progress in the field of electromagnetic phenomena associated with earthquakes (EQs) and EQ prediction during the last three decades, and it is recently agreed that electromagnetic effects do appear prior to an EQ. A few phenomena are well recognized as being statistically correlated with EQs as promising candidates for short-term EQ predictors: the first is ionospheric perturbation not only in the lower ionosphere as seen by subionospheric VLF (very low frequency, 3 kHz f 30 kHz)/LF (low frequency, 30 kHz f 300 kHz) propagation but also in the upper F region as detected by ionosondes, TEC (total electron content) observations, satellite observations, etc, and the second is DC earth current known as SES (Seismic electric signal). In addition to the above two physical phenomena, this review highlights the following four physical wave phenomena in ULF (ultra low frequency, frequency Hz)/ELF (extremely low frequency, 3 Hz frequency 3 kHz) ranges, including 1) ULF lithospheric radiation (i.e., direct radiation from the lithosphere), 2) ULF magnetic field depression effect (as an indicator of lower ionospheric perturbation), 3) ULF/ELF electromagnetic radiation (radiation in the atmosphere), and 4) Schumann resonance (SR) anomalies (as an indicator of the perturbations in the lower ionosphere and stratosphere). For each physical item, we will repeat the essential points and also discuss recent advances and future perspectives. For the purpose of future real EQ prediction practice, we pay attention to the statistical correlation of each phenomenon with EQs, and its predictability in terms of probability gain. Of course, all of those effects are recommended as plausible candidates for short-term EQ prediction, and they can be physically explained in terms of the unified concept of the lithosphere-atmosphere-ionosphere coupling (LAIC) process, so a brief description of this coupling has been carried out by using these four physical parameters though the mechanism of each phenomenon is still poorly understood. In conclusion, we have to emphasize the importance of more statistical studies for more abundant datasets sometimes with the use of AI (artificial intelligence) techniques, more case studies for huge (M greater than 7) EQ events, recommendation of critical analyses, and finally multi-parameters observation (even though it is tough work).
文摘磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到。频率分析显示,ULF波的周期、质子各向异性周期和EMIC波包的周期非常接近。MMS-4卫星在约1 h后经过附近空间区域,研究发现随着ULF波的幅度减弱,EMIC波包的准周期性也逐渐减弱。研究结果为ULF波在日侧外磁层调制质子各向异性从而产生周期性EMIC波包提供了完整的观测证据链。同时,观测结果进一步证明,这种ULF波调制的EMIC波包能够在大于2Re的空间尺度内发生,且能够持续存在于几个小时以上的时间尺度。
基金supported by the National Natural Science Foundation of China (grant numbers 41774168 and 41421003)
文摘In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a recurrence time of a few minutes. The validation of this scenario requires spacecraft observations of ultra-low-frequency hydromagnetic waves in the magnetosphere and simultaneous observations of poleward-moving auroral arcs near the spacecraft footprints. Here we present the first observational evidence from the multi-spacecraft THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission and the conjugated all-sky imager to support the scenario that standing hydromagnetic waves can generate the quasi-periodic appearance of poleward-moving auroral arcs. In this specific event, the observed waves were toroidal branches of the standing hydromagnetic waves, which were excited by a pulse in the solar wind dynamic pressure. Multi-spacecraft measurements from THEMIS also suggest higher wave frequencies at lower L shells (consistent with the distribution of magnetic field line eigenfrequencies), which indicates that the phase difference across latitudes would increase with time. As time proceeds, the enlarged phase difference corresponds to a lower propagation speed of the auroral arcs, which agrees very well with the ground-based optical data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42188101, 42174188, 42474217, 42330207, 42374193, 42241143, and 42025404)the National Key R&D Program of China (Grant Nos. 2022YFF0503700 and 2022YFF0503900)。
文摘Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performing a detailed event study in terms of particle distribution maps and wave–particle variable correlation maps, we report that ULF waves observed by the Mars Atmosphere and Volatile EvolutioN(MAVEN) spacecraft in the Martian foreshock can effectively modulate the suprathermal electron fluxes by the magnetic field fluctuations. In particular, the variations in electron fluxes at energies of ~10–100 eV are significant in the perpendicular direction, showing good relationships with changes in the wave field strength characterized by a correlation coefficient ~0.8. These findings demonstrate the generality of interactions of ULF waves with electrons, even at these low energies, highlighting the importance of such processes throughout the heliosphere.