A novel approach for improving antenna bandwidth is described using a 6-element Yagi-Uda array as an example. The new approach applies Central Force Optimization, a deterministic metaheuristic, and Variable Z0 technol...A novel approach for improving antenna bandwidth is described using a 6-element Yagi-Uda array as an example. The new approach applies Central Force Optimization, a deterministic metaheuristic, and Variable Z0 technology, a novel, proprietary design and optimization methodology, to produce an array with 33.09% fractional impedance bandwidth. This array’s performance is compared to its CFO-optimized Fixed Z0counterpart, and to the performance of a 6-ele- ment Dominating Cone Line Search-optimized array. Both CFO-optimized antennas exhibit better performance than the DCLS array, especially with respect to impedance bandwidth. Although the Yagi-Uda antenna was chosen to illustrate this new approach to antenna design and optimization, the methodology is entirely general and can be applied to any antenna against any set of performance objectives.展开更多
This paper investigates the effect of adding three extensions to Central Force Optimization when it is used as the Global Search and Optimization method for the design and optimization of 6-elementYagi-Uda arrays. Tho...This paper investigates the effect of adding three extensions to Central Force Optimization when it is used as the Global Search and Optimization method for the design and optimization of 6-elementYagi-Uda arrays. Those exten</span><span><span style="font-family:Verdana;">sions are </span><i><span style="font-family:Verdana;">Negative</span></i> <i><span style="font-family:Verdana;">Gravity</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Elitism</span></i><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Dynamic</span></i> <i><span style="font-family:Verdana;">Threshold</span></i> <i><span style="font-family:Verdana;">Optimization</span></i><span style="font-family:Verdana;">. T</span></span><span style="font-family:Verdana;">he basic CFO heuristic does not include any of these, but adding them substan</span><span style="font-family:Verdana;">tially improves the algorithm’s performance. This paper extends the work r</span><span style="font-family:Verdana;">eported in a previous paper that considered only negative gravity and which </span><span style="font-family:Verdana;">showed a significant performance improvement over a range of optimized a</span><span style="font-family:Verdana;">rrays. Still better results are obtained by adding to the mix </span><i><span style="font-family:Verdana;">Elitism</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">DTO</span></i><span style="font-family:Verdana;">. An overall improvement in best fitness of 19.16% is achieved by doing so. While the work reported here was limited to the design/optimization of 6-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">element Yagis, the reasonable inference based on these data is that any antenna design/optimization problem, indeed any Global Search and Optimiza</span><span style="font-family:Verdana;">tion problem, antenna or not, utilizing Central Force Optimization as the Gl</span><span style="font-family:Verdana;">obal Search and Optimization engine will benefit by including all three extensions, probably substantially.展开更多
文摘A novel approach for improving antenna bandwidth is described using a 6-element Yagi-Uda array as an example. The new approach applies Central Force Optimization, a deterministic metaheuristic, and Variable Z0 technology, a novel, proprietary design and optimization methodology, to produce an array with 33.09% fractional impedance bandwidth. This array’s performance is compared to its CFO-optimized Fixed Z0counterpart, and to the performance of a 6-ele- ment Dominating Cone Line Search-optimized array. Both CFO-optimized antennas exhibit better performance than the DCLS array, especially with respect to impedance bandwidth. Although the Yagi-Uda antenna was chosen to illustrate this new approach to antenna design and optimization, the methodology is entirely general and can be applied to any antenna against any set of performance objectives.
文摘This paper investigates the effect of adding three extensions to Central Force Optimization when it is used as the Global Search and Optimization method for the design and optimization of 6-elementYagi-Uda arrays. Those exten</span><span><span style="font-family:Verdana;">sions are </span><i><span style="font-family:Verdana;">Negative</span></i> <i><span style="font-family:Verdana;">Gravity</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Elitism</span></i><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Dynamic</span></i> <i><span style="font-family:Verdana;">Threshold</span></i> <i><span style="font-family:Verdana;">Optimization</span></i><span style="font-family:Verdana;">. T</span></span><span style="font-family:Verdana;">he basic CFO heuristic does not include any of these, but adding them substan</span><span style="font-family:Verdana;">tially improves the algorithm’s performance. This paper extends the work r</span><span style="font-family:Verdana;">eported in a previous paper that considered only negative gravity and which </span><span style="font-family:Verdana;">showed a significant performance improvement over a range of optimized a</span><span style="font-family:Verdana;">rrays. Still better results are obtained by adding to the mix </span><i><span style="font-family:Verdana;">Elitism</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">DTO</span></i><span style="font-family:Verdana;">. An overall improvement in best fitness of 19.16% is achieved by doing so. While the work reported here was limited to the design/optimization of 6-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">element Yagis, the reasonable inference based on these data is that any antenna design/optimization problem, indeed any Global Search and Optimiza</span><span style="font-family:Verdana;">tion problem, antenna or not, utilizing Central Force Optimization as the Gl</span><span style="font-family:Verdana;">obal Search and Optimization engine will benefit by including all three extensions, probably substantially.