Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescenc...Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescence sensor for quantitative detection of Cd^(2+)in paddy rice based on inner filter effect(IFE)combined with enzyme inhibition mechanism.The AEP modification UCNPs can offer a stable fluorescence donor at 658 nm and be quenched by the oxidized tetramethylbenzidine(oxTMB)catalyzed by horseradish peroxidase(HRP)enzymes.Without addition of Cd^(2+),the fluorescence of AEP@UCNPs fluorescence sensor was weaken due to the IFE between AEP@UCNPs and oxTMB.With addition of Cd^(2+),HRP enzyme activity was inhibited by Cd^(2+),leading to the decreased oxTMB,resulting in the enhance upconversion fluorescence intensity.As a result,the fluorescence intensity signal at 658 nm of the IFE-based AEP@UCNPs fluorescence sensor increased linearly with the increase in Cd^(2+)in a wide range from 0.5μmol/L to 6μmol/L and the limit of detection(LOD)was 24.6 n mol/L.In addition,our proposed IFE-based AEP@UCNPs fluorescence sensor can achieve Cd^(2+)detection in paddy rice in 30 min.展开更多
As a renovator in the field of gene editing,CRISPR-Cas9 has demonstrated immense potential for advancing next-generation gene therapy owing to its simplicity and precision.However,this potential faces significant chal...As a renovator in the field of gene editing,CRISPR-Cas9 has demonstrated immense potential for advancing next-generation gene therapy owing to its simplicity and precision.However,this potential faces significant challenges primarily stemming from the difficulty in efficiently delivering large-sized genome editing system(including Cas9 protein and sgRNA)into targeted cells and spatiotemporally controlling their activity in vitro and in vivo.Therefore,the development of CRISPR/Cas9 nanovectors that integrate high loading capacity,efficient encapsulation and spatiotemporally-controlled release is highly desirable.Herein,we have engineered a near-infrared(NIR)light-activated upconversion-DNA nanocapsule for the remote control of CRISPR-Cas9 genome editing.The light-responsive upconversion-DNA nanocapsules consist of macroporous silica(mSiO_(2))coated upconversion nanoparticles(UCNPs)and photocleavable onitrobenzyl-phosphate-modified DNA shells.The UCNPs act as a“nanotransducers”to convert NIR light(980 nm)into local ultraviolet light,thereby facilitating the cleavage of photosensitive DNA nanocapsules and enabling on-demand release of CRISPR-Cas9 encapsuled in the macroporous silica.Furthermore,by formulating a sgRNA targeted to a tumor gene(polo-like kinase-1,PLK-1),the CRISPR-Cas9 loaded UCNPDNA nanocapsules(crUCNP-DNA nanocapsules)have effectively suppressed the proliferation of tumor cells through NIR light-activated gene editing both in vitro and in vivo.Overall,this UCNP-DNA nanocapsule holds tremendous potential for CRISPR-Cas9 delivery and remote-controlled gene editing in deep tissues,as well as the treatment of diverse diseases.展开更多
目的:构建基于上转换光学成像/磁共振成像(UCL/MRI)的纳米材料UCNP-PEG-Trastuzumab,探讨其用于HER2高表达人乳腺癌细胞SKBR3的多模态显像研究。方法:采用课题组前期制备稀土掺杂钆的上转换纳米粒子(UCNP)与HER2受体特异结合的抗体曲妥...目的:构建基于上转换光学成像/磁共振成像(UCL/MRI)的纳米材料UCNP-PEG-Trastuzumab,探讨其用于HER2高表达人乳腺癌细胞SKBR3的多模态显像研究。方法:采用课题组前期制备稀土掺杂钆的上转换纳米粒子(UCNP)与HER2受体特异结合的抗体曲妥单抗(Trastuzumab)的偶联获得UCL/MRI靶向探针。以高表达HER2受体的人乳腺癌细胞SKBR3细胞为观察对象,通过噻唑蓝比色法(MTT)进行细胞毒性检测。加入靶向探针UCNP-PEG-Trastuzumab共同孵育作为实验组,细胞加入UCNP-PEG共同孵育作为对照组,不添加任何探针的细胞作为空白组,利用共聚焦显微镜和MRI进行体外细胞成像;进行视觉分析与比较各组细胞光学和MRI信号,检测其结合效率。结果:1透射电子显微镜下(TEM),UCNP呈球形颗粒状,粒径约60nm;在980nm波长光激发下,发出绿色的荧光;2体外毒性试验MTT结果表明UCNP-PEG对SKBR3细胞毒性较小;320μg/m l浓度的UC N P-PEG-Tr a st u z u m ab与SK BR 3细胞孵育30分钟后,UCL/M R I成像结果均显示UC N P-PEGTrastuzumab能与SKBR3细胞靶向性结合。结论:构建HER2受体靶向特异性探针UCNP-PEG-Trastuzumab,能在体外与目的细胞特异性结合。展开更多
基金financially supported by the National Natural Science Foundation of China(32202132,32172229)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Educations(PAPD)。
文摘Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescence sensor for quantitative detection of Cd^(2+)in paddy rice based on inner filter effect(IFE)combined with enzyme inhibition mechanism.The AEP modification UCNPs can offer a stable fluorescence donor at 658 nm and be quenched by the oxidized tetramethylbenzidine(oxTMB)catalyzed by horseradish peroxidase(HRP)enzymes.Without addition of Cd^(2+),the fluorescence of AEP@UCNPs fluorescence sensor was weaken due to the IFE between AEP@UCNPs and oxTMB.With addition of Cd^(2+),HRP enzyme activity was inhibited by Cd^(2+),leading to the decreased oxTMB,resulting in the enhance upconversion fluorescence intensity.As a result,the fluorescence intensity signal at 658 nm of the IFE-based AEP@UCNPs fluorescence sensor increased linearly with the increase in Cd^(2+)in a wide range from 0.5μmol/L to 6μmol/L and the limit of detection(LOD)was 24.6 n mol/L.In addition,our proposed IFE-based AEP@UCNPs fluorescence sensor can achieve Cd^(2+)detection in paddy rice in 30 min.
基金supported by the National Natural Science Foundation of China(Nos.21804059 and 21701059)the Natural Science Foundation of Jiangsu Province(No.BK20180974)+1 种基金the China Postdoctoral Science Foundation(No.2020M681544)the Postdoctoral Science Foundation of Jiangsu Province(No.2020Z351)。
文摘As a renovator in the field of gene editing,CRISPR-Cas9 has demonstrated immense potential for advancing next-generation gene therapy owing to its simplicity and precision.However,this potential faces significant challenges primarily stemming from the difficulty in efficiently delivering large-sized genome editing system(including Cas9 protein and sgRNA)into targeted cells and spatiotemporally controlling their activity in vitro and in vivo.Therefore,the development of CRISPR/Cas9 nanovectors that integrate high loading capacity,efficient encapsulation and spatiotemporally-controlled release is highly desirable.Herein,we have engineered a near-infrared(NIR)light-activated upconversion-DNA nanocapsule for the remote control of CRISPR-Cas9 genome editing.The light-responsive upconversion-DNA nanocapsules consist of macroporous silica(mSiO_(2))coated upconversion nanoparticles(UCNPs)and photocleavable onitrobenzyl-phosphate-modified DNA shells.The UCNPs act as a“nanotransducers”to convert NIR light(980 nm)into local ultraviolet light,thereby facilitating the cleavage of photosensitive DNA nanocapsules and enabling on-demand release of CRISPR-Cas9 encapsuled in the macroporous silica.Furthermore,by formulating a sgRNA targeted to a tumor gene(polo-like kinase-1,PLK-1),the CRISPR-Cas9 loaded UCNPDNA nanocapsules(crUCNP-DNA nanocapsules)have effectively suppressed the proliferation of tumor cells through NIR light-activated gene editing both in vitro and in vivo.Overall,this UCNP-DNA nanocapsule holds tremendous potential for CRISPR-Cas9 delivery and remote-controlled gene editing in deep tissues,as well as the treatment of diverse diseases.
文摘目的:构建基于上转换光学成像/磁共振成像(UCL/MRI)的纳米材料UCNP-PEG-Trastuzumab,探讨其用于HER2高表达人乳腺癌细胞SKBR3的多模态显像研究。方法:采用课题组前期制备稀土掺杂钆的上转换纳米粒子(UCNP)与HER2受体特异结合的抗体曲妥单抗(Trastuzumab)的偶联获得UCL/MRI靶向探针。以高表达HER2受体的人乳腺癌细胞SKBR3细胞为观察对象,通过噻唑蓝比色法(MTT)进行细胞毒性检测。加入靶向探针UCNP-PEG-Trastuzumab共同孵育作为实验组,细胞加入UCNP-PEG共同孵育作为对照组,不添加任何探针的细胞作为空白组,利用共聚焦显微镜和MRI进行体外细胞成像;进行视觉分析与比较各组细胞光学和MRI信号,检测其结合效率。结果:1透射电子显微镜下(TEM),UCNP呈球形颗粒状,粒径约60nm;在980nm波长光激发下,发出绿色的荧光;2体外毒性试验MTT结果表明UCNP-PEG对SKBR3细胞毒性较小;320μg/m l浓度的UC N P-PEG-Tr a st u z u m ab与SK BR 3细胞孵育30分钟后,UCL/M R I成像结果均显示UC N P-PEGTrastuzumab能与SKBR3细胞靶向性结合。结论:构建HER2受体靶向特异性探针UCNP-PEG-Trastuzumab,能在体外与目的细胞特异性结合。
文摘掺杂稀土元素的上转换纳米材料(upconversion nanoparticles,UCNPs)作为新型无机发光材料,因其具有良好的荧光稳定性及生物相容性,并可避免生物材料的自发荧光,在生物传感领域具有明显优势。基于上转换材料的荧光共振能量转移(fluorescence resonance energy transfer,FRET)体系在生物检测方面的应用也越来越广泛。本文就上述转换材料为基础的FRET体系在生物毒素、激素、蛋白质、核酸、细菌等生物检测方面的应用及未来展望作一综述。