期刊文献+
共找到1,365篇文章
< 1 2 69 >
每页显示 20 50 100
Space-based self-organizing real-time wireless networks for satellite cluster
1
作者 Lei YANG Huaguo YANG +1 位作者 Zhenglong YIN Quan CHEN 《Chinese Journal of Aeronautics》 2025年第8期419-432,共14页
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod... The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster. 展开更多
关键词 SATELLITE Real time self-organized network Time synchronization Motion compensation
原文传递
Algorithm for Solving Traveling Salesman Problem Based on Self-Organizing Mapping Network 被引量:1
2
作者 朱江辉 叶航航 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期463-470,共8页
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ... Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP. 展开更多
关键词 traveling salesman problem(TSP) self-organizing mapping(SOM) combinatorial optimization neu-ral network
原文传递
High dynamic mobile topology-based clustering algorithm for UAV swarm networks
3
作者 CHEN Siji JIANG Bo +2 位作者 XU Hong PANG Tao GAO Mingke 《Journal of Systems Engineering and Electronics》 2025年第4期1103-1112,共10页
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin... Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks. 展开更多
关键词 unmanned aerial vehichle(uav)swarm network uav clustering MOBILITY virtual tube.
在线阅读 下载PDF
Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks
4
作者 Zheyuan Jia Fenglin Jin +1 位作者 Jun Xie Yuan He 《Computers, Materials & Continua》 2026年第1期447-461,共15页
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g... This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs. 展开更多
关键词 Space-air-ground integrated networks uav traffic offloading reinforcement learning
在线阅读 下载PDF
A blockchain-assisted lightweight UAV network authentication mechanism via covert communication
5
作者 Yuwen QIAN Huan CAI +4 位作者 Long SHI Zhen MEI Yumeng SHAO Feng SHU Xiangwei ZHOU 《Chinese Journal of Aeronautics》 2025年第10期216-229,共14页
The increasing importance of terminal privacy in the Unmanned Aerial Vehicle(UAV)network has led to a growing recognition of the crucial role of authentication technology in UAV network security.However,traditional au... The increasing importance of terminal privacy in the Unmanned Aerial Vehicle(UAV)network has led to a growing recognition of the crucial role of authentication technology in UAV network security.However,traditional authentication approaches are vulnerable due to the transmission of identity information between UAVs and cryptographic paradigm management centers over a public channel.These vulnerabilities include brute-force attacks,single point of failure,and information leakage.Blockchain,as a decentralized distributed ledger with blockchain storage,tamper-proof,secure,and trustworthy features,can solve problems such as single-point-of-failure and trust issues,while the hidden communication in the physical layer can effectively resist information leakage and violent attacks.In this paper,we propose a lightweight UAV network authentication mechanism that leverages blockchain and covert communication,where the identity information is transmitted as covert tags carried by normal modulated signals.In addition,a weight-based Practical Byzantine Fault-Tolerant(wPBFT)consensus protocol is devised,where the weights are determined by the channel states of UAVs and the outcomes of past authentication scenarios.Simulation results demonstrate that the proposed mechanism outperforms traditional benchmarks in terms of security and robustness,particularly under conditions of low Signal-to-Noise Ratio(SNR)and short tag length. 展开更多
关键词 Unmanned Aerial Vehicle(uav)network Covert communication Blockchain Physical layer AUTHENTICATION
原文传递
Joint optimization via deep reinforcement learning for secure-driven NOMA-UAV networks
6
作者 Danhao DENG Chaowei WANG +1 位作者 Lexi XU Fan JIANG 《Chinese Journal of Aeronautics》 2025年第10期134-143,共10页
Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challe... Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challenges due to the shared wireless spectrum and Line-of-Sight(LoS)channel.This paper formulates a joint UAV trajectory design and power allocation problem with the aid of the ground jammer to maximize the sum secrecy rate.First,the joint optimization problem is modeled as a Markov Decision Process(MDP).Then,the Deep Reinforcement Learning(DRL)method is utilized to search the optimal policy from the continuous action space.In order to accelerate the sample accumulation,the Asynchronous Advantage Actor-Critic(A3C)scheme with multiple workers is proposed,which reformulates the action and reward to acquire complete update duration.Simulation results demonstrate that the A3C-based scheme outperforms the baseline schemes in term of the secrecy rate and stability. 展开更多
关键词 Asynchronous advantage actor-critic(A3C) NOMA-uav networks Power allocation Secure transmission uav trajectory design
原文传递
Performance Evaluation of Dynamic Adaptive Routing(DAR)for Unmanned Aerial Vehicle(UAV)Networks
7
作者 Khadija Slimani Samira Khoulji +1 位作者 Hamed Taherdoost Mohamed Larbi Kerkeb 《Computers, Materials & Continua》 2025年第11期4115-4132,共18页
Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor... Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks. 展开更多
关键词 Dynamic adaptive routing(DAR) uav networks NS-3 simulation packet delivery ratio(PDR) energy efficiency
在线阅读 下载PDF
Detection and Tracking of a UAV Based on Low-Frequency Communication Network
8
作者 Hongmei Shi Yifan Zhou +1 位作者 Mengxin Yang Dan Zeng 《Journal of Beijing Institute of Technology》 2025年第3期231-242,共12页
When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,includin... When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics. 展开更多
关键词 unmanned aerial vehicl(uav)detection and tracking low-frequency communication network field-measurement data
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
9
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(uav) long short-term memory(LSTM)
在线阅读 下载PDF
Intelligent UAV Based Energy Supply for 6G Wireless Powered IoT Networks 被引量:1
10
作者 Miao Jiansong Chen Haoqiang +4 位作者 Wang Pengjie Li Hairui Zhao Yan Mu Junsheng Yan Shi 《China Communications》 SCIE CSCD 2024年第9期321-337,共17页
In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with... In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems. 展开更多
关键词 6G wireless powered network energy efficiency IoT intelligent network uav communication
在线阅读 下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
11
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
在线阅读 下载PDF
Covert LEO Satellite Communication Aided by Generative Adversarial Network Based Cooperative UAV Jamming
12
作者 Shi Jia Li Xiaomeng +2 位作者 Liao Xiaomin Tie Zhuangzhuang Hu Junfan 《China Communications》 SCIE CSCD 2024年第9期27-39,共13页
In this paper,we study the covert performance of the downlink low earth orbit(LEO)satellite communication,where the unmanned aerial vehicle(UAV)is employed as a cooperative jammer.To maximize the covert rate of the LE... In this paper,we study the covert performance of the downlink low earth orbit(LEO)satellite communication,where the unmanned aerial vehicle(UAV)is employed as a cooperative jammer.To maximize the covert rate of the LEO satellite transmission,a multi-objective problem is formulated to jointly optimize the UAV’s jamming power and trajectory.For practical consideration,we assume that the UAV can only have partial environmental information,and can’t know the detection threshold and exact location of the eavesdropper on the ground.To solve the multiobjective problem,we propose the data-driven generative adversarial network(DD-GAN)based method to optimize the power and trajectory of the UAV,in which the sample data is collected by using genetic algorithm(GA).Simulation results show that the jamming solution of UAV generated by DD-GAN can achieve an effective trade-off between covert rate and probability of detection errors when only limited prior information is obtained. 展开更多
关键词 covert communication generative adversarial network LEO satellite uav jammer
在线阅读 下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:4
13
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
原文传递
AI-Driven Energy Optimization in UAV-Assisted Routing for Enhanced Wireless Sensor Networks Performance
14
作者 Syed Kamran Haider Abbas Ahmed +2 位作者 Noman Mujeeb Khan Ali Nauman Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2024年第9期4085-4110,共26页
In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.T... In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.This research introduces a sophisticated framework,driven by computational intelligence,that merges clustering techniques with UAV mobility to refine routing strategies in WSNs.The proposed approach divides the sensor field into distinct sectors and implements a novel weighting system for the selection of cluster heads(CHs).This system is primarily aimed at reducing energy consumption through meticulously planned routing and path determination.Employing a greedy algorithm for inter-cluster dialogue,our framework orchestrates CHs into an efficient communication chain.Through comparative analysis,the proposed model demonstrates a marked improvement over traditional methods such as the cluster chain mobile agent routing(CCMAR)and the energy-efficient cluster-based dynamic algorithms(ECCRA).Specifically,it showcases an impressive 15%increase in energy conservation and a 20%reduction in data transmission time,highlighting its advanced performance.Furthermore,this paper investigates the impact of various network parameters on the efficiency and robustness of the WSN,emphasizing the vital role of sophisticated computational strategies in optimizing network operations. 展开更多
关键词 uav trajectory clustering next-generation wireless sensor network(NGWSN) energy efficiency mobile sink
在线阅读 下载PDF
A novel fractional uplink power control framework for self-organizing networks 被引量:2
15
作者 Zezhou Luo Hongcheng Zhuang 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1434-1440,共7页
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere... Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD). 展开更多
关键词 5G and beyond self-organizing networks Uplink power control Optimization efficiency Traffic distribution
在线阅读 下载PDF
Context-Aware Feature Extraction Network for High-Precision UAV-Based Vehicle Detection in Urban Environments
16
作者 Yahia Said Yahya Alassaf +3 位作者 Taoufik Saidani Refka Ghodhbani Olfa Ben Rhaiem Ali Ahmad Alalawi 《Computers, Materials & Continua》 SCIE EI 2024年第12期4349-4370,共22页
The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.... The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.UAVs offer unique advantages over stationary traffic cameras,including greater flexibility in monitoring large and dynamic urban areas.However,detecting small,densely packed vehicles in UAV imagery remains a significant challenge due to occlusion,variations in lighting,and the complexity of urban landscapes.Conventional models often struggle with these issues,leading to inaccurate detections and reduced performance in practical applications.To address these challenges,this paper introduces CFEMNet,an advanced deep learning model specifically designed for high-precision vehicle detection in complex urban environments.CFEMNet is built on the High-Resolution Network(HRNet)architecture and integrates a Context-aware Feature Extraction Module(CFEM),which combines multi-scale feature learning with a novel Self-Attention and Convolution layer setup within a Multi-scale Feature Block(MFB).This combination allows CFEMNet to accurately capture fine-grained details across varying scales,crucial for detecting small or partially occluded vehicles.Furthermore,the model incorporates an Equivalent Feed-Forward Network(EFFN)Block to ensure robust extraction of both spatial and semantic features,enhancing its ability to distinguish vehicles from similar objects.To optimize computational efficiency,CFEMNet employs a local window adaptation of Multi-head Self-Attention(MSA),which reduces memory overhead without sacrificing detection accuracy.Extensive experimental evaluations on the UAVDT and VisDrone-DET2018 datasets confirm CFEMNet’s superior performance in vehicle detection compared to existing models.This new architecture establishes CFEMNet as a benchmark for UAV-enabled traffic management,offering enhanced precision,reduced computational demands,and scalability for deployment in smart city applications.The advancements presented in CFEMNet contribute significantly to the evolution of smart city technologies,providing a foundation for intelligent and responsive traffic management systems that can adapt to the dynamic demands of urban environments. 展开更多
关键词 Smart cities uavS vehicle detection trafficmanagement intelligent transportation systems anchor-free detection high-resolution network context-aware feature extraction multi-head self-attention
在线阅读 下载PDF
UAV-YOLO:红外场景下无人机实时目标检测算法
17
作者 刘清荣 陈慈发 张上 《红外技术》 北大核心 2025年第10期1263-1271,共9页
针对红外场景下无人机检测精度低与计算量高的问题,提出一种改进的UAV-YOLO算法。首先,引入加权双向特征金字塔网络(Bi FPN),通过优化多尺度特征融合提升模型检测性能;其次,采用轻量级细节增强检测头(LSDECD),在降低参数量的同时增强小... 针对红外场景下无人机检测精度低与计算量高的问题,提出一种改进的UAV-YOLO算法。首先,引入加权双向特征金字塔网络(Bi FPN),通过优化多尺度特征融合提升模型检测性能;其次,采用轻量级细节增强检测头(LSDECD),在降低参数量的同时增强小目标检测性能;此外,构建卷积注意力融合模块(CAFM)强化特征交互提升鲁棒性;最后,使用Wise-SIo U损失函数以加速模型收敛。实验结果表明,改进模型mAP@50达到91.3%,较YOLOv11n提升1.7%。在公开红外图像弱小飞机目标检测跟踪数据集下验证表明,改进模型各项评价指标均有提升,证明其具有良好的泛化性和鲁棒性。 展开更多
关键词 无人机检测 金字塔网络 检测头 卷积注意力 Wise-SIoU 检测平均精度
在线阅读 下载PDF
Graph-based multi-agent reinforcement learning for collaborative search and tracking of multiple UAVs 被引量:2
18
作者 Bocheng ZHAO Mingying HUO +4 位作者 Zheng LI Wenyu FENG Ze YU Naiming QI Shaohai WANG 《Chinese Journal of Aeronautics》 2025年第3期109-123,共15页
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj... This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments. 展开更多
关键词 Unmanned aerial vehicle(uav) Multi-agent reinforcement learning(MARL) Graph attention network(GAT) Tracking Dynamic and unknown environment
原文传递
基于UAV-YOLO的无人机航拍图像轻量化目标检测算法
19
作者 刘熠龙 张自立 冯冀宁 《现代电子技术》 北大核心 2025年第15期51-56,共6页
针对无人机航拍图像背景复杂、小目标检测精度低、漏检率高等问题,文中基于YOLOv7提出一种针对无人机航拍图像的轻量化目标检测算法(UAV-YOLO)。首先,以部分卷积为基础设计了轻量化卷积PSConv,在保持检测性能的同时使网络更加轻量化;其... 针对无人机航拍图像背景复杂、小目标检测精度低、漏检率高等问题,文中基于YOLOv7提出一种针对无人机航拍图像的轻量化目标检测算法(UAV-YOLO)。首先,以部分卷积为基础设计了轻量化卷积PSConv,在保持检测性能的同时使网络更加轻量化;其次,将下采样模块与注意力机制融合,进而构建了MA-ECA模块;然后,对网络的检测头进行优化,添加了小物体检测头并删除大物体检测头;最后,提出Focal-SIoU损失函数,以进一步提升模型的检测精度。该算法在公开数据集VisDrone2019与UAVDT上进行验证,相比于其他目标检测模型,在降低网络参数量与计算量的同时有效提升了检测精度。 展开更多
关键词 YOLOv7 无人机 小目标检测 轻量化网络 部分卷积 注意力机制
在线阅读 下载PDF
A self-organizing shortest path finding strategy on complex networks
20
作者 沈毅 裴文江 +1 位作者 王开 王少平 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3783-3789,共7页
The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our met... The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods. 展开更多
关键词 complex networks self-organIZATION the shortest path thermal flux diffusion
原文传递
上一页 1 2 69 下一页 到第
使用帮助 返回顶部