期刊文献+
共找到21,450篇文章
< 1 2 250 >
每页显示 20 50 100
Research on multi-view collaborative detection system for UAV swarms based on Pix2Pix framework and BAM attention mechanism
1
作者 Yan Ding Qingxin Cao +2 位作者 Bozhi Zhang Peilin Li Zhongjiao Shi 《Defence Technology(防务技术)》 2025年第4期213-226,共14页
Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,an... Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects. 展开更多
关键词 Drone swarm systems Reconnaissance and strike Image generation multi-view detection Pix2Pix framework Attention mechanism
在线阅读 下载PDF
An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities
2
作者 Vi Hoai Nam Chu Thi Minh Hue Dang Van Anh 《Computers, Materials & Continua》 2026年第1期2030-2044,共15页
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top... Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments. 展开更多
关键词 uav FANET smart cities reinforcement learning Q-LEARNING
在线阅读 下载PDF
Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks
3
作者 Zheyuan Jia Fenglin Jin +1 位作者 Jun Xie Yuan He 《Computers, Materials & Continua》 2026年第1期447-461,共15页
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g... This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs. 展开更多
关键词 Space-air-ground integrated networks uav traffic offloading reinforcement learning
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
4
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 uav imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
分层池化:带宏观引导收益的UAV集群区域覆盖搜索方法
5
作者 王宁 梁晓龙 +2 位作者 李哲 孙贇 郑傲宇 《控制与决策》 北大核心 2025年第12期3763-3776,共14页
针对UAV集群在未知环境中的区域覆盖搜索问题,提出一种基于分层池化地图模型的UAV集群区域覆盖搜索算法.首先,构建环境地图对待搜索任务区域进行表征;其次,将图像处理领域的池化技术与区域栅格地图结合,构建分辨率不同的多层次池化地图... 针对UAV集群在未知环境中的区域覆盖搜索问题,提出一种基于分层池化地图模型的UAV集群区域覆盖搜索算法.首先,构建环境地图对待搜索任务区域进行表征;其次,将图像处理领域的池化技术与区域栅格地图结合,构建分辨率不同的多层次池化地图模型;然后,设计包含覆盖率、边界约束和宏观收益等在内的决策目标函数,提出适用于强对抗环境的UAV集群分布式信息交互机制;最后,采用数值仿真对所提方法的有效性进行验证.仿真结果表明,所提算法能够在不同信道质量的条件下有效引导UAV集群对未知任务区域展开覆盖搜索,在给定覆盖搜索场景中,算法决策时间和覆盖率均优于现有其他方法. 展开更多
关键词 uav集群 区域搜索 航迹规划 分层池化 信息交互
原文传递
考虑空中碰撞风险的UAV运行风险评估
6
作者 李楠 闫博芸 +3 位作者 孙廪实 韩鹏 郑志刚 焦庆宇 《中国安全科学学报》 北大核心 2025年第10期91-97,共7页
为提高无人机(UAV)空中交通管理效率、保障飞行安全以及推动UAV在复杂空域环境中的安全应用,聚焦于UAV运行风险评估。首先,针对非结构化空域环境下具有自主感知与决策能力的UAV,基于机载通信导航监视能力、机动特性及系统响应时间等关... 为提高无人机(UAV)空中交通管理效率、保障飞行安全以及推动UAV在复杂空域环境中的安全应用,聚焦于UAV运行风险评估。首先,针对非结构化空域环境下具有自主感知与决策能力的UAV,基于机载通信导航监视能力、机动特性及系统响应时间等关键参数,构建冲突概率模型和考虑避让机动策略的碰撞概率模型,量化评估空域碰撞风险;然后,鉴于UAV相撞事故不会直接导致人员伤亡,构建综合考虑UAV空中相撞事件与系统失效引发坠机的地面风险评估模型;最后,以1×10^(-6)死亡人数/飞行小时作为安全目标水平,确定空中飞行所需保持的的安全间隔。结果表明:同时考虑冲突概率和冲突升级为碰撞的概率,可解决自由飞行阶段风险被低估的问题;不同运行场景可容许的碰撞风险最大值有较大差异。 展开更多
关键词 无人机(uav) 运行风险 碰撞风险 地面风险 安全间隔
原文传递
基于UAV高密度点云的结构面粗糙度分形特征与各向异性 被引量:1
7
作者 宋盛渊 刘殿泽 +4 位作者 李保天 赵明宇 杨泽 黄迪 王思骢 《地球科学》 北大核心 2025年第4期1599-1611,共13页
为研究岩体结构面各向异性对粗糙度评价的影响,以藏东南某铁路察达工点高陡斜坡为研究对象,运用无人机综合摄影测量技术,提取研究区结构面高密度点云并剪裁结构面轮廓线,采用修正直边法与盒维数法求算粗糙度系数JRC与分形维数D,拟合JRC... 为研究岩体结构面各向异性对粗糙度评价的影响,以藏东南某铁路察达工点高陡斜坡为研究对象,运用无人机综合摄影测量技术,提取研究区结构面高密度点云并剪裁结构面轮廓线,采用修正直边法与盒维数法求算粗糙度系数JRC与分形维数D,拟合JRC与D的新公式并利用数字化Barton标准线验证.选取压剪性和拉张性结构面各15个,运用新公式计算各采样方向的JRC.结果表明:压剪性结构面粗糙度各向异性规律显著,整体上JRC由剪切滑动方向至垂直剪切滑动方向递增,呈椭圆状分布;拉张性结构面粗糙度存在各向异性但无明显规律,JRC随采样角度变化波动较大,呈刺状分布.证明不同力学成因的结构面JRC各向异性存在差异,在评价粗糙度时应遵循不同采样规则. 展开更多
关键词 无人机 综合摄影测量 高密度点云 结构面粗糙度 分形维数 各向异性 工程地质学
原文传递
基于改进SIFT和多约束的UAV影像匹配方法 被引量:1
8
作者 何明磊 王中元 +2 位作者 戚铭心 杨振宇 袁芳 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期212-219,共8页
针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像... 针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像降采样后,综合采用SIFT算法和Scharr-ORB(oriented brief)算法共同进行特征点检测和描述;然后,使用最近邻距离比值法(nearest neighbor distance ratio,NNDR)、双向约束匹配和余弦相似度约束匹配的多约束方法进行特征点的粗匹配;最后,使用最小中值(least median of squares,LMedS)算法计算基础矩阵和随机抽样一致性(random sample consensus,RANSAC)算法计算单应矩阵的多约束方法进行特征点的精匹配,进一步提高匹配精度。结果表明,该方法在获得更多特征点和匹配对数的同时,能够剔除较多的误匹配,使其具有较高的匹配正确率和匹配精度。 展开更多
关键词 无人机(uav)影像 影像匹配 边缘检测 多约束方法 基础矩阵
在线阅读 下载PDF
基于RSMA的UAV网络资源分配研究综述 被引量:1
9
作者 王正强 任凯 +2 位作者 万晓榆 樊自甫 朱小波 《电讯技术》 北大核心 2025年第6期829-837,共9页
速率分割多址接入(Rate-Splitting Multiple Access,RSMA)技术可以针对各种网络负载和用户信道条件提升频效、能效、用户公平性和服务质量,因此有望成为超5G(Beyond 5G,B5G)和6G中关键的多址接入技术。与此同时,无人机(Unmanned Aerial ... 速率分割多址接入(Rate-Splitting Multiple Access,RSMA)技术可以针对各种网络负载和用户信道条件提升频效、能效、用户公平性和服务质量,因此有望成为超5G(Beyond 5G,B5G)和6G中关键的多址接入技术。与此同时,无人机(Unmanned Aerial Vehicle,UAV)因具有良好的机动性、强视距链路、易于实施且成本低等特点而在无线通信领域中得到了广泛应用。将RSMA技术和UAV相结合成为B5G和6G的一个重要研究方向,基于RSMA的UAV网络资源分配问题成为学术研究的热点。通过梳理相关现有研究文献,从4个方面概述了基于RSMA的UAV网络资源分配研究现状,包括无人机基站的资源分配、无人机中继系统的资源分配、无人机挂载智能反射面的资源分配、无人机辅助边缘计算的资源分配。最后在总结当前研究的基础上,对未来的研究方向进行了展望。 展开更多
关键词 无人机基站 无人机中继 速率分割多址接入(RSMA) 资源分配
在线阅读 下载PDF
无人机视角多源目标检测数据集UAV-RGBT及算法基准
10
作者 汪进中 戴顺 +5 位作者 张秀伟 田雪涛 邢颖慧 汪芳 尹翰林 张艳宁 《电子学报》 北大核心 2025年第3期686-704,共19页
基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前... 基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前少有公开的UAV视角RGB-T多源目标检测数据集,一定程度上限制了UAV视角RGB-T多源目标检测算法的研究和应用.与此同时,UAV应用场景复杂多变,其飞行高度、速度、焦距和背景等快速变化,所拍摄目标在图像上呈现出尺度多样、稠密/稀疏分布不均衡、类别不平衡等特点,具有一定的挑战性.此外,在诸如目标侦察、交通监控等高时效性应用场景中,算法需在保证高精度的同时实现实时目标检测,因此,算法的设计必须充分考虑精度与速度之间的平衡.针对上述问题,本文构建了一个跨季节、跨昼夜、多类别、多尺度的大规模UAV视角RGB-T多源图像数据集UAV-RGBT,包含20个类别、5117对RGB-T图像和超11万个标注,有助于推进UAV视角多源目标检测算法的研究.同时,基于YOLOv8n模型,本文提出了一种UAV视角多源目标检测(UAV-based Dualbranch Multispectral object Detection,UAV-DMDet)模型,其通过多源交叉注意力融合和多源特征分解组合方法有效促进了多源特征的深度融合,较好地实现了模型参数量、检测速度和检测精度的均衡.实验结果表明:在UAVRGBT数据集上,UAV-DMDet模型较单源YOLOv8n模型,在RGB和T模态方面,mAP@0.5分别提高了3.61%、11.03%,mAP@0.5:0.95分别提高了0.84%、6.76%;在DroneVehicle数据集上,mAP@0.5和mAP@0.5:0.95较主流算法I2MDet提高了2.66%和12.36%;在检测速度方面,以640×640分辨率图像为例,UAV-DMDet模型在单张GeForce RTX 3090显卡上FP32精度推理速度可达31帧/s,在华为昇腾710处理器上FP16精度推理速度可达58帧/s,可有效应用于UAV视角RGB-T多源实时目标检测任务. 展开更多
关键词 无人机(uav) 可见光-热红外(RGB-T)多源目标检测 数据集 多源特征融合 YOLOv8
在线阅读 下载PDF
基于UAV影像点云密度的植被稀疏区DEM精度分析 被引量:1
11
作者 戴志林 郭辉 包勤跃 《北京测绘》 2025年第3期316-321,共6页
本文以无人机(UAV)倾斜摄影影像点云为数据源,通过对构建植被稀疏区数字高程模型(DEM)的最佳点云密度进行分析研究,从中选取出最佳点云密度,以实现高效、快速获取DEM数据。使用随机采样算法将原始点云以10%~90%密度进行抽稀,同时采用中... 本文以无人机(UAV)倾斜摄影影像点云为数据源,通过对构建植被稀疏区数字高程模型(DEM)的最佳点云密度进行分析研究,从中选取出最佳点云密度,以实现高效、快速获取DEM数据。使用随机采样算法将原始点云以10%~90%密度进行抽稀,同时采用中误差对生成的DEM进行精度评价分析。结果显示:①在点云抽稀10%~40%时,中误差随着点云密度的减小而增大,同时在点云抽稀30%时中误差与原始点云几乎相似;②在点云抽稀40%~60%时,中误差变化较为平缓,但总体呈上升趋势;③在点云抽稀60%~90%时,随着点云密度的进一步减小,中误差随着点云密度的减小而迅速增大。得出结论,点云密度与DEM精度呈正相关,抽稀30%的点云成为在同类型条件植被稀疏区UAV倾斜摄影点云生成DEM的最佳点云密度。 展开更多
关键词 无人机(uav)倾斜摄影 影像点云 点云密度 抽稀 数字高程模型(DEM)
在线阅读 下载PDF
基于UAV遥感技术的高标准农田耕种状况监测与时空分析 被引量:3
12
作者 苏秀永 杨杰 +1 位作者 李星华 杨磊 《江西农业学报》 2025年第6期68-72,共5页
阐述了UAV遥感技术在高标准农田耕种状况监测中的应用,探讨了基于UAV遥感技术的农田耕种状况监测方法,并对高标准农田耕种状况进行了时空分析。大量数据表明,UAV遥感技术能够快速、准确地获取农田耕种状况信息,为高标准农田的管理和决... 阐述了UAV遥感技术在高标准农田耕种状况监测中的应用,探讨了基于UAV遥感技术的农田耕种状况监测方法,并对高标准农田耕种状况进行了时空分析。大量数据表明,UAV遥感技术能够快速、准确地获取农田耕种状况信息,为高标准农田的管理和决策提供重要的数据支持,对提高农业生产效率和促进农业可持续发展具有重要意义。 展开更多
关键词 高标准农田 uav遥感技术 耕种状况 监测 时空分析
在线阅读 下载PDF
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data 被引量:1
13
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
基于RIS辅助的UAV物理层安全传输技术
14
作者 丁伟豪 屈正浩 +3 位作者 申凌峰 王光辉 朱政宇 张千坤 《无线电工程》 2025年第10期1976-1985,共10页
针对低空通信背景下智能超表面(Reconfigurable Intelligent Surface,RIS)辅助的UAV物理层安全(Physical Layer Security,PLS)传输技术,考虑可能存在多窃听威胁的场景,提出基于UAV轨迹和RIS相移联合优化的安全增强机制。具体提出2种优... 针对低空通信背景下智能超表面(Reconfigurable Intelligent Surface,RIS)辅助的UAV物理层安全(Physical Layer Security,PLS)传输技术,考虑可能存在多窃听威胁的场景,提出基于UAV轨迹和RIS相移联合优化的安全增强机制。具体提出2种优化方案:①基于凸优化理论,通过连续凸近似(Successive Convex Approximation,SCA)和交替优化将非凸问题分解为可解的凸子问题,以最大化平均安全速率;②引入双延迟深度确定性策略梯度(Twin Delayed Deep Deterministic Policy Gradient,TD3)深度强化学习(Deep Reinforcement Learing,DRL)算法,利用双重Q网络和延迟策略更新机制,联合优化UAV轨迹与RIS相位,在连续动作空间中生成较为平滑的UAV轨迹,实现高效实时优化。仿真结果表明,凸优化算法在所构建的系统中展现出更快的收敛特性,而TD3算法在安全速率方面显著高于凸优化方法,尤其在RIS单元数增加时优势更明显,验证了其在提升通信安全性和鲁棒性方面的潜力。 展开更多
关键词 uav通信 智能超表面 物理层安全 凸优化算法 双延迟深度确定性策略梯度算法
在线阅读 下载PDF
基于DRL的UAV辅助海上物联网联合卸载和资源分配 被引量:1
15
作者 李予诺 魏泽 何荣希 《现代电子技术》 北大核心 2025年第3期141-148,共8页
针对多无人机辅助海上物联网搜救场景,为了使无人机能处理无人船卸载的更多计算任务,同时尽可能减少无人机的能量浪费,文中提出一种基于深度确定性策略梯度(DDPG)的任务感知联合卸载和资源分配算法。首先,考虑无人机可自适应调整时隙内... 针对多无人机辅助海上物联网搜救场景,为了使无人机能处理无人船卸载的更多计算任务,同时尽可能减少无人机的能量浪费,文中提出一种基于深度确定性策略梯度(DDPG)的任务感知联合卸载和资源分配算法。首先,考虑无人机可自适应调整时隙内飞行时间以及无人船卸载任务在无人机排队计算的实际情况,建立了通信模型、计算模型和能耗模型。其次,通过联合考虑卸载决策、功率分配以及无人机飞行轨迹规划和速度调整,构建最大化所有无人机平均收益的优化问题;然后将该问题转化为马尔科夫决策过程,确立了对应的状态空间、动作空间和奖励函数,并通过DDPG算法求解出最优策略。仿真结果表明,与其他基准算法相比,所提算法可以有效提高无人机的平均收益。 展开更多
关键词 移动边缘计算 无人机 深度强化学习 计算卸载 功率分配 轨迹规划
在线阅读 下载PDF
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8 被引量:2
16
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection uav images detection small target detection YOLO
在线阅读 下载PDF
MolP-PC:a multi-view fusion and multi-task learning framework for drug ADMET property prediction 被引量:1
17
作者 Sishu Li Jing Fan +2 位作者 Haiyang He Ruifeng Zhou Jun Liao 《Chinese Journal of Natural Medicines》 2025年第11期1293-1300,共8页
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches... The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development. 展开更多
关键词 Molecular ADMET prediction multi-view fusion Attention mechanism Multi-task deep learning
原文传递
Multi-view BLUP:a promising solution for post-omics data integrative prediction 被引量:1
18
作者 Bingjie Wu Huijuan Xiong +3 位作者 Lin Zhuo Yingjie Xiao Jianbing Yan Wenyu Yang 《Journal of Genetics and Genomics》 2025年第6期839-847,共9页
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as... Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data. 展开更多
关键词 multi-view data Best linear unbiased prediction Similarity function Phenotype prediction Differential evolution algorithm
原文传递
Three-dimension collision-free trajectory planning of UAVs based on ADS-B information in low-altitude urban airspace 被引量:2
19
作者 Chao DONG Yifan ZHANG +3 位作者 Ziye JIA Yiyang LIAO Lei ZHANG Qihui WU 《Chinese Journal of Aeronautics》 2025年第2期274-285,共12页
The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d... The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace. 展开更多
关键词 Three-dimension trajectory planning of uav Collision avoidance Sliding window ADS-B Low-altitude urban airspace
原文传递
MMHCA:Multi-feature representations based on multi-scale hierarchical contextual aggregation for UAV-view geo-localization 被引量:1
20
作者 Nanhua CHEN Tai-shan LOU Liangyu ZHAO 《Chinese Journal of Aeronautics》 2025年第6期517-532,共16页
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e... In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation. 展开更多
关键词 Geo-localization Image retrieval uav Hierarchical contextual aggregation Multi-feature representations
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部