Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,an...Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects.展开更多
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as...Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.展开更多
The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d...The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.展开更多
Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models...Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios.展开更多
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as...In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.展开更多
This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground commu...This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.展开更多
Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the bat...Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the battle for military superiority between nations.The construction of UAV cluster effect web is a kind of combinatorial optimization in essence.By selecting the optimal combination in the limited equipment concentration,the whole network can be optimized.Firstly,in order to improve the combinatorial optimization efficiency of UAV cluster effect web,NSGA-Ⅱbased on deep Q-network(DQN-based NSGA-Ⅱ)is proposed.This algorithm is used to solve the Multi-Objective Combinatorial Optimization(MOCO)problem in the construction of effect web.Secondly,a dynamic generation method is devised to solve the problem caused by the possible destruction of enemy and our node under the fierce confrontation between the two sides.Finally,the simulation results show that the DQN-based NSGA-Ⅱis better than the genetic algorithm with single operator.The comparison experiment shows that the weight of evaluation indexes will have a corresponding influence on the optimization results.展开更多
Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as...Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as crashing into birds or unexpected structures.Airdrop systems with parachutes risk dispersing payloads away from target locations.The objective here is to use multiple UAVs to distribute payloads cooperatively to assigned locations.The civil defense department must balance coverage,accurate landing,and flight safety while considering battery power and capability.Deep Q-network(DQN)models are commonly used in multi-UAV path planning to effectively represent the surroundings and action spaces.Earlier strategies focused on advanced DQNs for UAV path planning in different configurations,but rarely addressed non-cooperative scenarios and disaster environments.This paper introduces a new DQN framework to tackle challenges in disaster environments.It considers unforeseen structures and birds that could cause UAV crashes and assumes urgent landing zones and winch-based airdrop systems for precise delivery and return.A new DQN model is developed,which incorporates the battery life,safe flying distance between UAVs,and remaining delivery points to encode surrounding hazards into the state space and Q-networks.Additionally,a unique reward system is created to improve UAV action sequences for better delivery coverage and safe landings.The experimental results demonstrate that multi-UAV first aid delivery in disaster environments can achieve advanced performance.展开更多
基金supported by the Natural Science Foundation of China,Grant No.62103052.
文摘Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects.
基金supported by National Natural Science Foundation of China(32122066,32201855)STI2030—Major Projects(2023ZD04076).
文摘Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.
基金supported by the National Key R&D Program of China(No.2022YFB3104502)the National Natural Science Foundation of China(No.62301251)+2 种基金the Natural Science Foundation of Jiangsu Province of China under Project(No.BK20220883)the open research fund of National Mobile Communications Research Laboratory,Southeast University,China(No.2024D04)the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.
文摘Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios.
基金supported by Beijing Natural Science Fund–Haidian Original Innovation Joint Fund(L232040 and L232045).
文摘In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.
基金supported by the National Natural Science Foundation of China(No.62371080 and 62031006)the National Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0597)the Venture&Innovation Support Program for Chongqing Overseas Returnees,China(No.cx2022063)。
文摘This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.
基金co-supported by the Fundamental Research Funds for the Central Universities,China。
文摘Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the battle for military superiority between nations.The construction of UAV cluster effect web is a kind of combinatorial optimization in essence.By selecting the optimal combination in the limited equipment concentration,the whole network can be optimized.Firstly,in order to improve the combinatorial optimization efficiency of UAV cluster effect web,NSGA-Ⅱbased on deep Q-network(DQN-based NSGA-Ⅱ)is proposed.This algorithm is used to solve the Multi-Objective Combinatorial Optimization(MOCO)problem in the construction of effect web.Secondly,a dynamic generation method is devised to solve the problem caused by the possible destruction of enemy and our node under the fierce confrontation between the two sides.Finally,the simulation results show that the DQN-based NSGA-Ⅱis better than the genetic algorithm with single operator.The comparison experiment shows that the weight of evaluation indexes will have a corresponding influence on the optimization results.
基金supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan under Grant No.249015/0224.
文摘Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as crashing into birds or unexpected structures.Airdrop systems with parachutes risk dispersing payloads away from target locations.The objective here is to use multiple UAVs to distribute payloads cooperatively to assigned locations.The civil defense department must balance coverage,accurate landing,and flight safety while considering battery power and capability.Deep Q-network(DQN)models are commonly used in multi-UAV path planning to effectively represent the surroundings and action spaces.Earlier strategies focused on advanced DQNs for UAV path planning in different configurations,but rarely addressed non-cooperative scenarios and disaster environments.This paper introduces a new DQN framework to tackle challenges in disaster environments.It considers unforeseen structures and birds that could cause UAV crashes and assumes urgent landing zones and winch-based airdrop systems for precise delivery and return.A new DQN model is developed,which incorporates the battery life,safe flying distance between UAVs,and remaining delivery points to encode surrounding hazards into the state space and Q-networks.Additionally,a unique reward system is created to improve UAV action sequences for better delivery coverage and safe landings.The experimental results demonstrate that multi-UAV first aid delivery in disaster environments can achieve advanced performance.