UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make f...UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.展开更多
<div style="text-align:justify;"> Due to its air superiority and high mobility, unmanned aerial vehicle (UAV) can obtain better line-of-sight (LoS) link transmission channel. Therefore, UAV assisted da...<div style="text-align:justify;"> Due to its air superiority and high mobility, unmanned aerial vehicle (UAV) can obtain better line-of-sight (LoS) link transmission channel. Therefore, UAV assisted data collection for wireless sensor networks (WSNs) has become an important research direction. This paper intends to minimize the loss of WSNs for the robust data acquisition and communication assisted by UAV under the imperfect channel state information (CSI). On the premise of ensuring the completion of the communication task, we jointly optimize the wake-up schedule of SNs and the flight trajectory of the UAV, by considering the flight speed of the UAV and the sparse access of all sensor nodes (SNs) in WSN. Because the formulated optimization problem is a mixed integer nonconvex problem, we decompose the original problem into the efficient suboptimal solutions to overcome the difficulty of the optimization. Finally, the number of access node corresponding to the optimized operation time and access efficiency is induced for the entire WSN system efficiency improving. The simulation shows the performance gains of our proposed scheme and the influences of the system parameters are analyzed. </div>展开更多
Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-...Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.展开更多
In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wirele...In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wireless environment is proposed.This method can estimate the relational degree between the actual face of an UAV data link in an interface environment and the simulation scenarios in an anechoic chamber by using the Grey Relational Analysis(GRA) theory.The dynamic drive of the microwave instrument produces a real-time corresponding interference signal and realises scene mapping.The experimental results show that the maximal correlation between the interference signal in the real scene and the angular domain of the radiation antenna in the anechoic chamber is 0.959 3.Further,the relational degree of the Signal-toInterference Ratio(SIR) of the UAV at its reception terminal indoors and in the anechoic chamber is 0.996 8,and the time of instrument drive is only approximately 10 μs.All of the above illustrates that this method can achieve a simulation close to a real field dynamic electromagnetic interference signal of an indoor UAV data link.展开更多
文摘UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.
文摘<div style="text-align:justify;"> Due to its air superiority and high mobility, unmanned aerial vehicle (UAV) can obtain better line-of-sight (LoS) link transmission channel. Therefore, UAV assisted data collection for wireless sensor networks (WSNs) has become an important research direction. This paper intends to minimize the loss of WSNs for the robust data acquisition and communication assisted by UAV under the imperfect channel state information (CSI). On the premise of ensuring the completion of the communication task, we jointly optimize the wake-up schedule of SNs and the flight trajectory of the UAV, by considering the flight speed of the UAV and the sparse access of all sensor nodes (SNs) in WSN. Because the formulated optimization problem is a mixed integer nonconvex problem, we decompose the original problem into the efficient suboptimal solutions to overcome the difficulty of the optimization. Finally, the number of access node corresponding to the optimized operation time and access efficiency is induced for the entire WSN system efficiency improving. The simulation shows the performance gains of our proposed scheme and the influences of the system parameters are analyzed. </div>
基金Aeronautical Science Foundation of China (2007ZC53030)
文摘Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.
基金supported by a certain Ministry Foundation under Grant No.20212HK03010
文摘In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wireless environment is proposed.This method can estimate the relational degree between the actual face of an UAV data link in an interface environment and the simulation scenarios in an anechoic chamber by using the Grey Relational Analysis(GRA) theory.The dynamic drive of the microwave instrument produces a real-time corresponding interference signal and realises scene mapping.The experimental results show that the maximal correlation between the interference signal in the real scene and the angular domain of the radiation antenna in the anechoic chamber is 0.959 3.Further,the relational degree of the Signal-toInterference Ratio(SIR) of the UAV at its reception terminal indoors and in the anechoic chamber is 0.996 8,and the time of instrument drive is only approximately 10 μs.All of the above illustrates that this method can achieve a simulation close to a real field dynamic electromagnetic interference signal of an indoor UAV data link.
文摘【目的】针对烤烟产量预测精度低、机理性不强等问题,提出了一种耦合无人机高光谱影像和WOFOST作物生长模型的烤烟产量预测方法。【方法】使用集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)作为数据同化算法,比较使用数据同化前后WOFOST模型对烤烟生产力预测的结果,构建遥感与生长模型耦合的烟草产量预测模型。【结果】使用EnKF算法将状态变量叶面积指数(Leaf area index,LAI)进行数据同化后,红花大金元、云烟87和K326的叶干重NRMSE从27.58%、23.63%和27.99%降低为21.32%、15.43%和12.18%,产量预测精度得到了明显提升。【结论】研究结果将为烟草的产量预测、氮素管理调控以及烟草智慧生产等提供技术支持。