The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to i...The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to images with limited resolution and contrast.In this paper,minimum variance(M V)adaptive beamforming and coherence factor(CF)weighting are combined to achieve an MVCF-based UACI,which can improve the cavitation imaging quality.The detailed algorithm evaluation has been investigated from both simulation and experimental data The simulation data include10point targets and a cyst,while the experimental data are obtained by detecting the dissipation of cavitation bubbles in water excited by a single element transducer with frequency of1.2MHz.The advantages of the proposed methodology as well as the comparison with conventional B-mode,DAS?M V,DAS-CF and MV on the basis of compressive sensing(CS)(called MVCS)beamformers are discussed.The results show that MVCF beamformer has a significant improvement in terms of both resolutions and signal-to-noise ratio(SN R).The MVCF-based UACI has a SNR at21.82dB higher,lateral and axial resolution at2.69times and1.93times?respectively,which were compared with those of B-mode active cavitation mapping.The MVCF-based UACI can be used to image the residual cavitation bubbles with a higher SNR and better spatial resolution展开更多
Ensuring the secure transmission of secret messages,particularly through video—one of the most widely used media formats—is a critical challenge in the field of information security.Relying on a single-layered secur...Ensuring the secure transmission of secret messages,particularly through video—one of the most widely used media formats—is a critical challenge in the field of information security.Relying on a single-layered security approach is often insufficient for safeguarding sensitive data.This study proposes a triple-lightweight cryptographic and steganographic model that integrates the Hill Cipher Technique(HCT),Rotation Left Digits(RLD),and Discrete Wavelet Transform(DWT)to embed secret messages within video frames securely.The approach begins with encrypting the secret text using a private key matrix(PK^(1))of size 2×2 up to 6×6 via HCT.A second encryption layer is applied using a dynamic private key(PK2)derived from the RGB pixel values of the video frame,resulting in a rotated cipher.The doubly encrypted message is then embedded into the video frames using the DWT method.Upon transmission,the concealed message is extracted using inverse DWT and decrypted in two steps—first with PK2 and then with the inverse of PK^(1).Experiments conducted using MPEG video sequences and message lengths ranging from 10 to 300 bytes demonstrate strong performance in terms of Mean Square Error(MSE),Peak Signal-to-Noise Ratio(PSNR),and Correlation Coefficient(CC)between original and encrypted messages.The similarity between original and stego frames is further validated using Structural Similarity Index(SSIM),Mean Absolute Error(MAE),Number of Pixel Change Rate(NPCR),and Unified Average Changing Intensity(UACI).Results confirm that utilizing video frames to generate PK2 offers superior security compared to static key images.Moreover,the indistinguishability between original and stego frames highlights the method’s robustness against visual and statistical attacks.展开更多
基金National Natural Science Foundation of China(No.11604305)Key Research and Development Projects from Ministry of Science and Technology of the People’s Republic of China(No.2016YFC0101605)
文摘The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to images with limited resolution and contrast.In this paper,minimum variance(M V)adaptive beamforming and coherence factor(CF)weighting are combined to achieve an MVCF-based UACI,which can improve the cavitation imaging quality.The detailed algorithm evaluation has been investigated from both simulation and experimental data The simulation data include10point targets and a cyst,while the experimental data are obtained by detecting the dissipation of cavitation bubbles in water excited by a single element transducer with frequency of1.2MHz.The advantages of the proposed methodology as well as the comparison with conventional B-mode,DAS?M V,DAS-CF and MV on the basis of compressive sensing(CS)(called MVCS)beamformers are discussed.The results show that MVCF beamformer has a significant improvement in terms of both resolutions and signal-to-noise ratio(SN R).The MVCF-based UACI has a SNR at21.82dB higher,lateral and axial resolution at2.69times and1.93times?respectively,which were compared with those of B-mode active cavitation mapping.The MVCF-based UACI can be used to image the residual cavitation bubbles with a higher SNR and better spatial resolution
文摘Ensuring the secure transmission of secret messages,particularly through video—one of the most widely used media formats—is a critical challenge in the field of information security.Relying on a single-layered security approach is often insufficient for safeguarding sensitive data.This study proposes a triple-lightweight cryptographic and steganographic model that integrates the Hill Cipher Technique(HCT),Rotation Left Digits(RLD),and Discrete Wavelet Transform(DWT)to embed secret messages within video frames securely.The approach begins with encrypting the secret text using a private key matrix(PK^(1))of size 2×2 up to 6×6 via HCT.A second encryption layer is applied using a dynamic private key(PK2)derived from the RGB pixel values of the video frame,resulting in a rotated cipher.The doubly encrypted message is then embedded into the video frames using the DWT method.Upon transmission,the concealed message is extracted using inverse DWT and decrypted in two steps—first with PK2 and then with the inverse of PK^(1).Experiments conducted using MPEG video sequences and message lengths ranging from 10 to 300 bytes demonstrate strong performance in terms of Mean Square Error(MSE),Peak Signal-to-Noise Ratio(PSNR),and Correlation Coefficient(CC)between original and encrypted messages.The similarity between original and stego frames is further validated using Structural Similarity Index(SSIM),Mean Absolute Error(MAE),Number of Pixel Change Rate(NPCR),and Unified Average Changing Intensity(UACI).Results confirm that utilizing video frames to generate PK2 offers superior security compared to static key images.Moreover,the indistinguishability between original and stego frames highlights the method’s robustness against visual and statistical attacks.