期刊文献+
共找到482篇文章
< 1 2 25 >
每页显示 20 50 100
SFPBL:Soft Filter Pruning Based on Logistic Growth Differential Equation for Neural Network
1
作者 Can Hu Shanqing Zhang +2 位作者 Kewei Tao Gaoming Yang Li Li 《Computers, Materials & Continua》 2025年第3期4913-4930,共18页
The surge of large-scale models in recent years has led to breakthroughs in numerous fields,but it has also introduced higher computational costs and more complex network architectures.These increasingly large and int... The surge of large-scale models in recent years has led to breakthroughs in numerous fields,but it has also introduced higher computational costs and more complex network architectures.These increasingly large and intricate networks pose challenges for deployment and execution while also exacerbating the issue of network over-parameterization.To address this issue,various network compression techniques have been developed,such as network pruning.A typical pruning algorithm follows a three-step pipeline involving training,pruning,and retraining.Existing methods often directly set the pruned filters to zero during retraining,significantly reducing the parameter space.However,this direct pruning strategy frequently results in irreversible information loss.In the early stages of training,a network still contains much uncertainty,and evaluating filter importance may not be sufficiently rigorous.To manage the pruning process effectively,this paper proposes a flexible neural network pruning algorithm based on the logistic growth differential equation,considering the characteristics of network training.Unlike other pruning algorithms that directly reduce filter weights,this algorithm introduces a three-stage adaptive weight decay strategy inspired by the logistic growth differential equation.It employs a gentle decay rate in the initial training stage,a rapid decay rate during the intermediate stage,and a slower decay rate in the network convergence stage.Additionally,the decay rate is adjusted adaptively based on the filter weights at each stage.By controlling the adaptive decay rate at each stage,the pruning of neural network filters can be effectively managed.In experiments conducted on the CIFAR-10 and ILSVRC-2012 datasets,the pruning of neural networks significantly reduces the floating-point operations while maintaining the same pruning rate.Specifically,when implementing a 30%pruning rate on the ResNet-110 network,the pruned neural network not only decreases floating-point operations by 40.8%but also enhances the classification accuracy by 0.49%compared to the original network. 展开更多
关键词 Filter pruning channel pruning CNN complexity deep neural networks filtering theory logistic model
在线阅读 下载PDF
Computation graph pruning based on critical path retention in evolvable networks
2
作者 XIE Xiaoyan YANG Tianjiao +4 位作者 ZHU Yun LUO Xing JIN Luochen YU Jinhao REN Xun 《High Technology Letters》 2025年第3期266-272,共7页
The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heig... The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heightened architectural complexity and expanded parameter dimensionality in evolvable networks present significant implementation challenges when deployed in resource-con-strained environments.Due to the critical paths ignored,traditional pruning strategies cannot get a desired trade-off between accuracy and efficiency.For this reason,a critical path retention pruning(CPRP)method is proposed.By deeply traversing the computational graph,the dependency rela-tionship among nodes is derived.Then the nodes are grouped and sorted according to their contribu-tion value.The redundant operations are removed as much as possible while ensuring that the criti-cal path is not affected.As a result,computational efficiency is improved while a higher accuracy is maintained.On the CIFAR benchmark,the experimental results demonstrate that CPRP-induced pruning incurs accuracy degradation below 4.00%,while outperforming traditional feature-agnostic grouping methods by an average 8.98%accuracy improvement.Simultaneously,the pruned model attains a 2.41 times inference acceleration while achieving 48.92%parameter compression and 53.40%floating-point operations(FLOPs)reduction. 展开更多
关键词 evolvable network computation graph traversing dynamic routing critical path retention pruning
在线阅读 下载PDF
DAUNet: Detail-Aware U-Shaped Network for 2D Human Pose Estimation
3
作者 Xi Li Yuxin Li +2 位作者 Zhenhua Xiao Zhenghua Huang Lianying Zou 《Computers, Materials & Continua》 SCIE EI 2024年第11期3325-3349,共25页
Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we... Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping mechanism.This network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution features.DAUNet is composed of three main components.First,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature loss.Second,after upsampling,the network eliminates redundant features,improving the overall efficiency.Finally,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher accuracy.Experimental results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO dataset.Moreover,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications. 展开更多
关键词 Human pose estimation keypoint detection u-shaped network architecture spatial grouping mechanism
在线阅读 下载PDF
A U-Shaped Network-Based Grid Tagging Model for Chinese Named Entity Recognition
4
作者 Yan Xiang Xuedong Zhao +3 位作者 Junjun Guo Zhiliang Shi Enbang Chen Xiaobo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4149-4167,共19页
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d... Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively. 展开更多
关键词 Chinese named entity recognition character-pair relation classification grid tagging u-shaped segmentation network
在线阅读 下载PDF
MAAUNet:Exploration of U-shaped encoding and decoding structure for semantic segmentation of medical image 被引量:1
5
作者 SHAO Shuo GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期418-429,共12页
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg... In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference. 展开更多
关键词 u-shaped attention network structure of MAAUNet convolutional neural network encoding-decoding structure attention mechanism medical image semantic segmentation
在线阅读 下载PDF
Tour Planning Design for Mobile Robots Using Pruned Adaptive Resonance Theory Networks 被引量:1
6
作者 S.Palani Murugan M.Chinnadurai S.Manikandan 《Computers, Materials & Continua》 SCIE EI 2022年第1期181-194,共14页
The development of intelligent algorithms for controlling autonomous mobile robots in real-time activities has increased dramatically in recent years.However,conventional intelligent algorithms currently fail to accur... The development of intelligent algorithms for controlling autonomous mobile robots in real-time activities has increased dramatically in recent years.However,conventional intelligent algorithms currently fail to accurately predict unexpected obstacles involved in tour paths and thereby suffer from inefficient tour trajectories.The present study addresses these issues by proposing a potential field integrated pruned adaptive resonance theory(PPART)neural network for effectively managing the touring process of autonomous mobile robots in real-time.The proposed system is implemented using the AlphaBot platform,and the performance of the system is evaluated according to the obstacle prediction accuracy,path detection accuracy,time-lapse,tour length,and the overall accuracy of the system.The proposed system provide a very high obstacle prediction accuracy of 99.61%.Accordingly,the proposed tour planning design effectively predicts unexpected obstacles in the environment and thereby increases the overall efficiency of tour navigation. 展开更多
关键词 Autonomous mobile robots path exploration NAVIGATION tour planning tour process potential filed integrated pruned ART networks AlphaBot platform
在线阅读 下载PDF
Growing and Pruning Based Deep Neural Networks Modeling for Effective Parkinson’s Disease Diagnosis
7
作者 Kemal Akyol 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期619-632,共14页
Parkinson’s disease is a serious disease that causes death.Recently,a new dataset has been introduced on this disease.The aim of this study is to improve the predictive performance of the model designed for Parkinson... Parkinson’s disease is a serious disease that causes death.Recently,a new dataset has been introduced on this disease.The aim of this study is to improve the predictive performance of the model designed for Parkinson’s disease diagnosis.By and large,original DNN models were designed by using specific or random number of neurons and layers.This study analyzed the effects of parameters,i.e.,neuron number and activation function on the model performance based on growing and pruning approach.In other words,this study addressed the optimum hidden layer and neuron numbers and ideal activation and optimization functions in order to find out the best Deep Neural Networks model.In this context of this study,several models were designed and evaluated.The overall results revealed that the Deep Neural Networks were significantly successful with 99.34%accuracy value on test data.Also,it presents the highest prediction performance reported so far.Therefore,this study presents a model promising with respect to more accurate Parkinson’s disease diagnosis. 展开更多
关键词 Parkinson’s disease machine learning growing and pruning deep neural networks.
在线阅读 下载PDF
Neural Network Pruning Algorithm with Penalty OBS Process
8
作者 MENGJiang WANGYao-cai LIUTao 《Journal of China University of Mining and Technology》 EI 2005年第1期52-55,共4页
Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not... Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method. 展开更多
关键词 GENERALIZATION neural network pruning algorithm penalty method optimal brain surgeon CLC number:TP 183
在线阅读 下载PDF
Double Pruning Structure Design for Deep Stochastic Configuration Networks Based on Mutual Information and Relevance
9
作者 YAN Aijun LI Jiale TANG Jian 《Instrumentation》 2022年第4期26-39,共14页
Deep stochastic configuration networks(DSCNs)produce redundant hidden nodes and connections during training,which complicates their model structures.Aiming at the above problems,this paper proposes a double pruning st... Deep stochastic configuration networks(DSCNs)produce redundant hidden nodes and connections during training,which complicates their model structures.Aiming at the above problems,this paper proposes a double pruning structure design algorithm for DSCNs based on mutual information and relevance.During the training process,the mutual information algorithm is used to calculate and sort the importance scores of the nodes in each hidden layer in a layer-by-layer manner,the node pruning rate of each layer is set according to the depth of the DSCN at the current time,the nodes that contribute little to the model are deleted,and the network-related parameters are updated.When the model completes the configuration procedure,the correlation evaluation strategy is used to sort the global connection weights and delete insignificance connections;then,the network parameters are updated after pruning is completed.The experimental results show that the proposed structure design method can effectively compress the scale of a DSCN model and improve its modeling speed;the model accuracy loss is small,and fine-tuning for accuracy restoration is not needed.The obtained DSCN model has certain application value in the field of regression analysis. 展开更多
关键词 Deep Stochastic Configuration networks Mutual Information RELEVANCE Hidden Node Double pruning
原文传递
CLAD:Criterion learner and attention distillation for automated CNN pruning
10
作者 Zheng Li Jiaxin Li +2 位作者 Shaojie Liu Bo Zhao Derong Liu 《Journal of Automation and Intelligence》 2025年第4期254-265,共12页
Filter pruning effectively compresses the neural network by reducing both its parameters and computational cost.Existing pruning methods typically rely on pre-designed pruning criteria to measure filter importance and... Filter pruning effectively compresses the neural network by reducing both its parameters and computational cost.Existing pruning methods typically rely on pre-designed pruning criteria to measure filter importance and remove those deemed unimportant.However,different layers of the neural network exhibit varying filter distributions,making it inappropriate to implement the same pruning criterion for all layers.Additionally,some approaches apply different criteria from the set of pre-defined pruning rules for different layers,but the limited space leads to the difficulty of covering all layers.If criteria for all layers are manually designed,it is costly and difficult to generalize to other networks.To solve this problem,we present a novel neural network pruning method based on the Criterion Learner and Attention Distillation(CLAD).Specifically,CLAD develops a differentiable criterion learner,which is integrated into each layer of the network.The learner can automatically learn the appropriate pruning criterion according to the filter parameters of each layer,thus the requirement of manual design is eliminated.Furthermore,the criterion learner is trained end-to-end by the gradient optimization algorithm to achieve efficient pruning.In addition,attention distillation,which fully utilizes the knowledge of unpruned networks to guide the optimization of the learner and improve the pruned network performance,is introduced in the process of learner optimization.Experiments conducted on various datasets and networks demonstrate the effectiveness of the proposed method.Notably,CLAD reduces the FLOPs of Res Net-110 by about 53%on the CIFAR-10 dataset,while simultaneously improves the network's accuracy by 0.05%.Moreover,it reduces the FLOPs of Res Net-50 by about 46%on the Image Net-1K dataset,and maintains a top-1 accuracy of 75.45%. 展开更多
关键词 Neural network pruning Model compression Knowledge distillation Feature attention Polar regularization
在线阅读 下载PDF
A Direct Noise Suppression Method for Marine Seismic Blended Acquisition Based on an Uformer Network
11
作者 WANG Shiyu TONG Siyou +7 位作者 WANG Jingang WEI Hao HENG Shuaijia XU Xiugang YANG Dekuan ZHANG Xu WANG Shurong LI Yuxing 《Journal of Ocean University of China》 2025年第2期355-364,共10页
The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adj... The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adjacent sources,resulting in blended noise that can adversely affect data processing and interpretation.Therefore,the de-blending method is needed to suppress blended noise and improve the quality of subsequent processing.Conventional de-blending methods,such as denoising and inversion methods,encounter challenges in parameter selection and entail high computational costs.In contrast,deep learning-based de-blending methods demonstrate reduced reliance on manual intervention and provide rapid calculation speeds post-training.In this study,we propose a Uformer network using a nonoverlapping window multihead attention mechanism designed for de-blending blended data in the common shot domain.We add the depthwise convolution to the feedforward network to improve Uformer’s ability to capture local context information.The loss function comprises SSIM and L1 loss.Our test results indicate that the Uformer outperforms convolutional neural networks and traditional denoising methods across various evaluation metrics,thus highlighting the effectiveness and advantages of Uformer in de-blending blended data. 展开更多
关键词 marine seismic data processing blended noise suppression deep learning u-shaped network structure transformer common shot domain
在线阅读 下载PDF
面向水下噪声源目标识别的轻量化网络构建与优化方法
12
作者 郑擎宇 邱龙皓 +1 位作者 梁国龙 王燕 《声学学报》 北大核心 2026年第1期158-169,共12页
本文提出了一种基于VGG-GAP及冗余特征剪枝的轻量化稳健水下噪声源目标识别网络构建与优化方法。该方法结合全局平均池化(GAP)对VGGNet进行优化,得到轻量化的VGG-GAP网络;利用特征图相关性对VGG-GAP进行网络剪枝,进一步去除冗余的卷积核... 本文提出了一种基于VGG-GAP及冗余特征剪枝的轻量化稳健水下噪声源目标识别网络构建与优化方法。该方法结合全局平均池化(GAP)对VGGNet进行优化,得到轻量化的VGG-GAP网络;利用特征图相关性对VGG-GAP进行网络剪枝,进一步去除冗余的卷积核,获得轻量级的网络结构。经ShipsEar和DeepShip数据集验证,所提方法能够在参数量降低超过94%和计算量降低超过30%的情况下,获得与原网络近似相同的识别性能。经过数据量逐渐减少的小样本数据集和失配水声信道中数据集的验证,所提方法在小样本数据集和失配水声环境中具有更好的鲁棒性。 展开更多
关键词 水声目标识别 轻量化网络 网络剪枝 小样本数据集 失配环境
原文传递
BurdenNet:先验信息导引的复杂环境下高炉多态料面目标检测网络
13
作者 倪梓明 陈先中 +1 位作者 侯庆文 张洁 《工程科学学报》 北大核心 2026年第1期26-38,共13页
传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典... 传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典型状态的料面图像数据集,并以预分类的状态为先验信息对网络通路进行剪枝.其次,将料面细长低曲率的形状特征与雷达采样信号的稀疏性质作为先验信息,提出空洞垂直偏移卷积(Atrous vertical deformable convolution,AVDC)模块提取多态料面特征.在此基础上,利用机械探尺数据构建先验空间注意力特征图,提出先验聚焦注意力(Prior focusing attention,PFA)模块,使网络优先聚焦于图像中的料面区域.最后对于边界框的回归,提出条带交并比(Band intersection over union,BIOU)损失函数进一步提升目标检测的速度与准确性.在钢铁公司高炉的实测数据上进行实验,结果表明,本文的BurdenNet相较于单一状态目标检测网络,在多态料面数据集上整体精确率提升了13.9%与5.2%,综合性能(F1-Score)提升了8.1%与4.3%,为复杂环境下多态料面图像的目标检测提供更准确的方法. 展开更多
关键词 多态料面 先验信息 空洞垂直偏移卷积 先验聚焦注意力 网络剪枝
在线阅读 下载PDF
Fault diagnosis of bearings based on deep separable convolutional neural network and spatial dropout 被引量:5
14
作者 Jiqiang ZHANG Xiangwei KONG +3 位作者 Xueyi LI Zhiyong HU Liu CHENG Mingzhu YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期301-312,共12页
Bearing pitting,one of the common faults in mechanical systems,is a research hotspot in both academia and industry.Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic ef... Bearing pitting,one of the common faults in mechanical systems,is a research hotspot in both academia and industry.Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic efficiency.This study proposes a novel bearing fault diagnosis method based on deep separable convolution and spatial dropout regularization.Deep separable convolution extracts features from the raw bearing vibration signals,during which a 3×1 convolutional kernel with a one-step size selects effective features by adjusting its weights.The similarity pruning process of the channel convolution and point convolution can reduce the number of parameters and calculation quantities by evaluating the size of the weights and removing the feature maps of smaller weights.The spatial dropout regularization method focuses on bearing signal fault features,improving the independence between the bearing signal features and enhancing the robustness of the model.A batch normalization algorithm is added to the convolutional layer for gradient explosion control and network stability improvement.To validate the effectiveness of the proposed method,we collect raw vibration signals from bearings in eight different health states.The experimental results show that the proposed method can effectively distinguish different pitting faults in the bearings with a better accuracy than that of other typical deep learning methods. 展开更多
关键词 Batch normalization Convolutional neural network Fault diagnosis Similarity pruning Spatial dropout
原文传递
DOBD Algorithm for Training Neural Network: Part I. Method 被引量:1
15
作者 吴建昱 何小荣 《过程工程学报》 CAS CSCD 北大核心 2002年第2期171-176,共6页
Overfitting is one of the important problems that restrain the application of neural network. The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to train the network r... Overfitting is one of the important problems that restrain the application of neural network. The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to train the network repeatedly with low calculational efficiency. In this paper, the Marquardt algorithm is incorporated into the OBD algorithm and a new method for pruning network-the Dynamic Optimal Brain Damage (DOBD) is introduced. This algorithm simplifies a network and obtains good generalization through dynamically deleting weight parameters with low sensitivity that is defined as the change of error function value with respect to the change of weights. Also a simplified method is presented through which sensitivities can be calculated during training with a little computation. A rule to determine the lower limit of sensitivity for deleting the unnecessary weights and other control methods during pruning and training are introduced. The training course is analyzed theoretically and the reason why DOBD algorithm can obtain a much faster training speed than the OBD algorithm and avoid overfitting effectively is given. 展开更多
关键词 DOBD算法 人工神经网络 研究方法
在线阅读 下载PDF
DOBD Algorithm for Training Neural Network: Part II. Application 被引量:1
16
作者 吴建昱 何小荣 《过程工程学报》 CAS CSCD 北大核心 2002年第3期262-267,共6页
In the first part of the article, a new algorithm for pruning networkDynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It... In the first part of the article, a new algorithm for pruning networkDynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It is verified that the algorithm can obtain good generalization through deleting weight parameters with low sensitivities dynamically and get better result than the Marquardt algorithm or the cross-validation method. Although the initial construction of network may be different, the finial number of free weights pruned by the DOBD algorithm is similar and the number is just close to the optimal number of free weights. The algorithm is also helpful to design the optimal structure of network. 展开更多
关键词 DOBD算法 人工神经网络 应用研究
在线阅读 下载PDF
Application of Neural Network to Game Algorithm
17
作者 Ying Tian Sangkee Min Qinge Wu 《Journal of Computer and Communications》 2018年第2期1-12,共12页
Intelligent was very important for command decision model, and it was also the key to improve the quality of simulation training and combat experiment. The decision-making content was more complex in the implementatio... Intelligent was very important for command decision model, and it was also the key to improve the quality of simulation training and combat experiment. The decision-making content was more complex in the implementation of tasks and the nature of the problem was different, so the demand for intelligence was high. To solve better the problem, this paper presented a game method and established a game neural network model. The model had been successfully applied in the classification experiment of winning rate between chess game, which had good theoretical significance and application value. 展开更多
关键词 GAME NEURAL network network TRAINING pruning
暂未订购
An Investigation of Frequency-Domain Pruning Algorithms for Accelerating Human Activity Recognition Tasks Based on Sensor Data
18
作者 Jian Su Haijian Shao +1 位作者 Xing Deng Yingtao Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第11期2219-2242,共24页
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Rec... The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)efforts.However,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems.This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity inference.Unlike traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for analysis.It emphasizes the low-frequency components by calculating their energy spectral density values.Subsequently,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational costs.Notably,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone architecture.The computational feasibility and data sensitivity of the proposed scheme are thoroughly examined.Impressively,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,respectively.Concurrently,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%. 展开更多
关键词 Convolutional neural networks human activity recognition network pruning frequency-domain transformation
在线阅读 下载PDF
The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network
19
作者 Jingting Mei Yang Yang +2 位作者 Zhipeng Gao Lanlan Rui Yijing Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期4883-4904,共22页
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ... Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks. 展开更多
关键词 network fault diagnosis edge networks Izhikevich neurons pruning dynamic spike timing dependent plasticity learning
在线阅读 下载PDF
Application of Partially Connected Neural Network
20
作者 李刚 赵林 《Journal of Donghua University(English Edition)》 EI CAS 2007年第2期260-263,共4页
This paper focuses mainly on application of Partially Connected Backpropagation Neural Network (PCBP) instead of typical Fully Connected Neural Network (FCBP). The initial neural network is fully connected, after trai... This paper focuses mainly on application of Partially Connected Backpropagation Neural Network (PCBP) instead of typical Fully Connected Neural Network (FCBP). The initial neural network is fully connected, after training with sample data using cross-entropy as error function, a clustering method is employed to cluster weights between inputs to hidden layer and from hidden to output layer, and connections that are relatively unnecessary are deleted, thus the initial network becomes a PCBP network. Then PCBP can be used in prediction or data mining by training PCBP with data that comes from database. At the end of this paper, several experiments are conducted to illustrate the effects of PCBP using Iris data set. 展开更多
关键词 neural network FCBP PCBP pruning
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部