The investigation of U-ample ω-semigroups is initiated. After obtaining some properties of such semigroups, a structure of U-ample ω-semigroups is established. It is proved that a semigroup is a U-ample ω-semigroup...The investigation of U-ample ω-semigroups is initiated. After obtaining some properties of such semigroups, a structure of U-ample ω-semigroups is established. It is proved that a semigroup is a U-ample ω-semigroup if and only if it can be expressed by WBR(T, 0), namely, the weakly Bruck-Reilly extensions of a monoid T. This result not only extends and amplifies the structure theorem of bisimple inverse ω-semigroups given by N. R. Reilly, but also generalizes the structure theorem of ,-bisimple type A ω-semigroups given by U. Asibong-Ibe in 1985.展开更多
As a generalization of an orthodox semigroup in the class of regular semigroups, a type W semigroup was first investigated by El-Qallali and Fountain. As an analogy of the type W semigroups in the class of abundant se...As a generalization of an orthodox semigroup in the class of regular semigroups, a type W semigroup was first investigated by El-Qallali and Fountain. As an analogy of the type W semigroups in the class of abundant semigroups, we introduce the U-orthodox semigroups. It is shown that the maximum congruence μ contained in on U-orthodox semigroups can be determined. As a consequence, we show that a U-orthodox semigroup S can be expressed by the spined product of a Hall semigroup W U and a V-ample semigroup (T,V). This theorem not only generalizes a known result of Hall-Yamada for orthodox semigroups but also generalizes another known result of El-Qallali and Fountain for type W semigroups.展开更多
文摘The investigation of U-ample ω-semigroups is initiated. After obtaining some properties of such semigroups, a structure of U-ample ω-semigroups is established. It is proved that a semigroup is a U-ample ω-semigroup if and only if it can be expressed by WBR(T, 0), namely, the weakly Bruck-Reilly extensions of a monoid T. This result not only extends and amplifies the structure theorem of bisimple inverse ω-semigroups given by N. R. Reilly, but also generalizes the structure theorem of ,-bisimple type A ω-semigroups given by U. Asibong-Ibe in 1985.
基金supported by National Natural Science Foundation of China (Grant No. 10671151)Natural Science Foundation of Shaanxi Province (Grant No. SJ08A06)partially by UGC (HK) (Grant No. 2160123)
文摘As a generalization of an orthodox semigroup in the class of regular semigroups, a type W semigroup was first investigated by El-Qallali and Fountain. As an analogy of the type W semigroups in the class of abundant semigroups, we introduce the U-orthodox semigroups. It is shown that the maximum congruence μ contained in on U-orthodox semigroups can be determined. As a consequence, we show that a U-orthodox semigroup S can be expressed by the spined product of a Hall semigroup W U and a V-ample semigroup (T,V). This theorem not only generalizes a known result of Hall-Yamada for orthodox semigroups but also generalizes another known result of El-Qallali and Fountain for type W semigroups.