期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
CRAKUT:融合对比区域注意力机制与临床先验知识的U-Transformer用于放射学报告生成 被引量:1
1
作者 梁业东 朱雄峰 +3 位作者 黄美燕 张文聪 郭翰宇 冯前进 《南方医科大学学报》 北大核心 2025年第6期1343-1352,共10页
目的 提出一种对比区域注意力和先验知识融合的U型Transformer模型(CRAKUT),旨在解决文本分布不均衡、缺乏上下文临床知识以及跨模态信息转换等问题,提升生成报告的质量,辅助影像科医生诊断工作。方法 CRAKUT包括3个关键模块:对比注意... 目的 提出一种对比区域注意力和先验知识融合的U型Transformer模型(CRAKUT),旨在解决文本分布不均衡、缺乏上下文临床知识以及跨模态信息转换等问题,提升生成报告的质量,辅助影像科医生诊断工作。方法 CRAKUT包括3个关键模块:对比注意力图像编码器,利用数据集中常见的正常影像提取增强的视觉特征;外部知识注入模块,融合临床先验知识;U型Transformer,通过U型连接架构完成从视觉到语言的跨模态信息转换。在图像编码器中引入的对比区域注意力机制,通过强调正常与异常语义特征之间的差异,增强了异常区域的特征表示。此外,文本编码器中的临床先验知识注入模块结合了临床历史信息及由ChatGPT生成的知识图谱,从而提升了报告生成的上下文理解能力。U型Transformer在多模态编码器与报告解码器之间建立连接,融合多种类型的信息以生成最终的报告。结果 在2个公开的CXR数据集(IU-Xray和MIMIC-CXR)对CRAKUT模型进行评估,结果显示,CRAKUT在报告生成任务中实现了当前最先进的性能。在MIMIC-CXR数据集,CRAKUT取得了BLEU-4分数0.159、ROUGE-L分数0.353、CIDEr分数0.500;在IU-Xray数据集上,METEOR分数达到0.258,均优于以往模型的表现。结论 本文提出的方法在临床疾病诊断和报告生成中具有巨大的应用潜力。 展开更多
关键词 胸部X光 对比区域注意力 临床先验知识 跨模态交互 u-transformer模型
在线阅读 下载PDF
基于十字注意力机制改进U-Transformer的新冠肺炎影像分割
2
作者 史爱武 高睿杨 +2 位作者 黄晋 盛鐾 马淑然 《软件导刊》 2023年第12期209-214,共6页
针对新冠肺炎CT片病灶部分分割检测困难、背景干扰多以及小病灶点易被忽略的问题,提出一种基于注意力机制改进U-Transformer的分割方法。利用注意力机制提升分割精度,修改U-Transformer网络卷积层中间的注意力模块,并提出十字注意力机制... 针对新冠肺炎CT片病灶部分分割检测困难、背景干扰多以及小病灶点易被忽略的问题,提出一种基于注意力机制改进U-Transformer的分割方法。利用注意力机制提升分割精度,修改U-Transformer网络卷积层中间的注意力模块,并提出十字注意力机制,使网络对病灶边缘的分割更为精确。在网络结构中添加全局-局部分割策略,使得对小病灶点的提取更加准确。实验结果表明,改进方法较U-Transformer的精度提高了5.96%,召回率提高了7.11%,样本相似度提高了6.49%,说明改进方法对小病灶点提取具有较好效果。拓展深度学习方法到医疗影像诊断中,有助于放射科医生更快捷、有效地进行病情诊断。 展开更多
关键词 新冠肺炎 影像分割 u-transformer 注意力机制 全局-局部策略
在线阅读 下载PDF
ANALYTICAL SOLUTIONS TO STRESS CONCENTRATION PROBLEM IN PLATES CONTAINING RECTANGULAR HOLE UNDER BIAXIAL TENSIONS 被引量:5
3
作者 Yi Yang Jike Liu Chengwu Cai 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第5期411-419,共9页
The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper dedu... The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions. By using the U-transformation technique and the finite element method, the analytical displacement solutions of the finite element equations are derived in the series form. Therefore, the stress concentration can then be discussed easily and conveniently. For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method. The stress concentration factors for various ratios of height to width of the hole are obtained. 展开更多
关键词 u-transformation stress concentration rectangular hole analytical solution biaxial tension
在线阅读 下载PDF
TRANSIENT SOLUTION FOR QUEUE-LENGTH DISTRIBUTION OF Geometry/G/1 QUEUEING MODEL 被引量:11
4
作者 Luo Chuanyi Tang Yinghui Liu Renbin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第1期95-100,共6页
In this paper, the Geometry/G/1 queueing model with inter-arrival times generated by a geometric(parameter p) distribution according to a late arrival system with delayed access and service times independently distr... In this paper, the Geometry/G/1 queueing model with inter-arrival times generated by a geometric(parameter p) distribution according to a late arrival system with delayed access and service times independently distributed with distribution {gj }, j≥ 1 is studied. By a simple method (techniques of probability decomposition, renewal process theory) that is different from the techniques used by Hunter(1983), the transient property of the queue with initial state i(i ≥ 0) is discussed. The recursion expression for u -transform of transient queue-length distribution at any time point n^+ is obtained, and the recursion expression of the limiting queue length distribution is also obtained. 展开更多
关键词 discrete time queue u-transform transient distribution stationary distribution recursion expression.
在线阅读 下载PDF
Convergence and exact solutions of spline finite strip method using unitary transformation approach
5
作者 J. KONG D. THUNG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第11期1407-1422,共16页
The spline finite strip method (FSM) is one of the most popular numerical methods for analyzing prismatic structures. Efficacy and convergence of the method have been demonstrated in previous studies by comparing on... The spline finite strip method (FSM) is one of the most popular numerical methods for analyzing prismatic structures. Efficacy and convergence of the method have been demonstrated in previous studies by comparing only numerical results with analytical results of some benchmark problems. To date, no exact solutions of the method or its explicit forms of error terms have been derived to show its convergence analytically. As such, in this paper, the mathematical exact solutions of spline finite strips in the plate analysis are derived using a unitary transformation approach (abbreviated as the U-transformation method herein). These exact solutions are presented for the first time in open literature. Unlike the conventional spline FSM which involves assembly of the global matrix equation and its numerical solution, the U-transformation method decouples the global matrix equation into the one involving only two unknowns, thus rendering the exact solutions of the spline finite strip to be derived explicitly. By taking Taylor's series expansion of the exact solution, error terms and convergence rates are also derived explicitly and compared directly with other numerical methods. In this regard, the spline FSM converges at the same rate as a non-conforming finite element, yet involving a smaller number of unknowns compared to the latter. The convergence rate is also found superior to the conventional finite difference method. 展开更多
关键词 spline finite strip u-transformation PLATE SYMMETRY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部