期刊文献+
共找到816篇文章
< 1 2 41 >
每页显示 20 50 100
基于优化的U-net网络掘进工作面煤岩识别方法研究 被引量:1
1
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 u-net网络 CANNY边缘检测算法
在线阅读 下载PDF
基于深度残差U-Net网络的海上地震混采数据分离技术研究
2
作者 梁兵 郭廷超 +2 位作者 许冲 鲍伟 潘成磊 《海洋地质前沿》 北大核心 2025年第10期28-37,共10页
随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先... 随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先将共炮道集混采数据分选为共检波点道集数据,以此来降低非主震源激发信号的相关性,然后基于残差UNet网络实现双源混采数据的智能分离。相比传统U-Net网络,本文的网络模型增加了网络深度,并在下采样过程中引入了卷积残差模块,有效避免了梯度消失和梯度爆炸问题,提升了特征提取能力,尤其在细节问题处理上,更好地保护了有效信息。通过模型试算和实际资料处理,验证了该网络在海洋混采数据分离中的良好效果。实验结果表明,残差U-Net网络能够有效分离混采数据,且不损失有效信号,显著提高了分离结果的信噪比。研究结果可为海洋地震混采数据的高精度分离提供新思路,为后续地震资料处理奠定基础。 展开更多
关键词 混采分离 深度学习 残差u-net网络 分离精度
在线阅读 下载PDF
结合并联Transformer和残差U-Net网络的水下图像增强 被引量:1
3
作者 陈清江 李宗莹 《电子科技》 2025年第8期57-65,共9页
针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Conv... 针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Convolution Transformer Block,HCTB)。综合了Transformer的捕获全局信息能力和卷积块捕获局部信息能力,并且在跳跃连接部分搭建了若干平行注意模块(Parallel Attention Module,PAM)来提取更重要的像素和通道信息。采用现有UIEB(Underwater Image Enhancement Benchmark dataset)配对数据集对网络进行训练。为验证所提算法的有效性,选取不同偏色程度的水下图像进行实验与测试。实验结果表明,所提模型较其他先进模型的峰值信噪比PSNR(Peak Single-to-Ratio)值提升了4.3%,获得了较好的主观和客观评价结果,有效提升了水下图像的增强水平。 展开更多
关键词 水下图像增强 TRANSFORMER 残差卷积 u-net网络 平行注意模块 通道注意 像素注意 卷积神经网络 深度学习
在线阅读 下载PDF
基于改进U-Net网络的PCB缺陷检测方法 被引量:1
4
作者 彭勇 刘慧民 +1 位作者 李伟松 王石 《计算技术与自动化》 2025年第1期183-188,共6页
针对PCB表面小尺寸缺陷难以检测的问题,提出了一种改进的U-Net语义分割网络,实现PCB表面缺陷图像的精确检测。首先,将U-Net的四层网络层次修改为三层,可以减少整体的计算工作量、提升网络模型收敛速度、缩短训练时间;其次,在U-Net网络... 针对PCB表面小尺寸缺陷难以检测的问题,提出了一种改进的U-Net语义分割网络,实现PCB表面缺陷图像的精确检测。首先,将U-Net的四层网络层次修改为三层,可以减少整体的计算工作量、提升网络模型收敛速度、缩短训练时间;其次,在U-Net网络中融入CBAM(Convolutional Block Attention Module)模块来提升图像中缺陷目标的显著度;然后,在编码阶段使用混合空洞卷积替换原有卷积块,增大感受野,获取更多的上下文信息。结果表明,U-Net的改进模型能够在提升模型性能的同时减少计算复杂度,能够增加PCB缺陷检测效率。 展开更多
关键词 缺陷检测 u-net 空洞卷积 注意力机制 语义分割网络 轻量型网络 深度学习 小目标检测
在线阅读 下载PDF
基于深度学习U-net网络的雾天汽车视觉图像超像素级配准方法
5
作者 靳新 潘月 《激光杂志》 北大核心 2025年第4期121-127,共7页
雾天汽车视觉图像因对比度降低和细节模糊而难以处理与配准。为此,提出基于深度学习U-net网络的超像素级配准方法。首先,通过改进的直方图均衡化算法,增强雾天图像的清晰度和对比度。接着,利用结合了GAN技术的U-Net网络对图像进行初始分... 雾天汽车视觉图像因对比度降低和细节模糊而难以处理与配准。为此,提出基于深度学习U-net网络的超像素级配准方法。首先,通过改进的直方图均衡化算法,增强雾天图像的清晰度和对比度。接着,利用结合了GAN技术的U-Net网络对图像进行初始分割,获取不同区域的标签集。随后,应用SLIC超像素分割算法,将相似像素组合成超像素,形成更具代表性的图像特征。最后,采用改进SURF算法,利用超像素特征进行精确图像对齐,提高配准精度和效率。实验证明,此方法不仅能有效改善雾天汽车视觉图像质量,还具备高配准精度,NCC值稳定在0.92至0.95之间。 展开更多
关键词 直方图均衡化 深度学习GAN-u-net分割网络 SLIC超像素分割 SuRF超像素级配准
原文传递
基于改进U-Net的城市洪涝灾害图像识别模型
6
作者 钟兴润 田晨斌 +2 位作者 李新宏 孟晓静 杨文欣 《中国安全科学学报》 北大核心 2025年第10期190-197,共8页
为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设... 为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设计,采用深层残差网络作为编码器以增强特征表达能力,同时在解码器中引入注意力机制,以提高对关键洪涝区域的响应能力;构建完整的训练与测试流程,使用FloodNet多类别复杂环境数据集训练改进AttResU-Net模型,从定量指标和定性可视化效果2个维度来评估模型性能,并与现有主流模型进行对比分析。结果表明:AttResU-Net模型在平均像素准确率(mPA)、像素准确率(PA)、平均精度(mPrecision)等指标上表现优异,其中,mPA为79.75%、PA为90.01%、mPrecision为81.78%;相比其他模型,AttResU-Net模型在树木、水体、道路和建筑物等识别中表现出更高的分割准确率、全局像素精度和全局识别能力。 展开更多
关键词 u-net 洪涝灾害 图像识别 图像分割 注意力机制 残差
原文传递
基于改进U-Net的舌象分割算法
7
作者 唐满 魏兵 郭东恩 《南阳理工学院学报》 2025年第4期8-15,共8页
舌诊作为一种独特的中医诊断手段,在疾病诊断、治疗及预防中发挥着不可替代的作用。针对传统舌诊主观性强和对医生经验依赖性高的问题,提出一种基于改进U-Net的舌象分割算法,通过引入条状池化和自适应空间金字塔池化(Atrous Spatial Pyr... 舌诊作为一种独特的中医诊断手段,在疾病诊断、治疗及预防中发挥着不可替代的作用。针对传统舌诊主观性强和对医生经验依赖性高的问题,提出一种基于改进U-Net的舌象分割算法,通过引入条状池化和自适应空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)对经典U-Net架构进行改进。首先对U-Net网络进行扩展,添加条状池化层以增强模型对舌象细节特征的捕捉能力,并引入ASPP模块以融合多尺度上下文信息。此外,通过数据集优化处理来增强模型的泛化能力。实验结果表明,改进后的U-Net模型在舌象分割任务上取得了显著的性能提升,提高了舌象分割的准确性,使得后续的舌象特征提取更加准确和一致,有助于标准化舌诊流程,具有较高的临床应用价值。 展开更多
关键词 舌象分割 卷积神经网络 u-net 条状池化 ASPP
在线阅读 下载PDF
基于多视图融合和2.5D U-Net的海马体图像分割
8
作者 陈立伟 彭逸飞 +1 位作者 余仁萍 孙源呈 《郑州大学学报(工学版)》 北大核心 2025年第5期26-34,共9页
针对现有海马体图像自动分割方法不能很好地利用上下文信息导致分割准确率难以提高以及训练和检测过程中内存消耗大的问题,提出了一种基于多视图融合和2.5D U-Net的海马体图像分割模型MVF-2.5D U-Net。首先,模型对2D U-Net进行了改进,增... 针对现有海马体图像自动分割方法不能很好地利用上下文信息导致分割准确率难以提高以及训练和检测过程中内存消耗大的问题,提出了一种基于多视图融合和2.5D U-Net的海马体图像分割模型MVF-2.5D U-Net。首先,模型对2D U-Net进行了改进,增加Triplet Attention模块的同时调整了网络的层深;其次,使用相邻切片组成的三通道2.5D图像代替传统的单切片输入;最后,构建了一个体积融合网络代替传统的众数投票机制。在HarP数据集上通过交叉验证的方式对网络进行了实验验证。实验结果表明:所提模型在海马体图像分割任务上的平均Dice系数和豪斯多夫距离分别为0.902和3.02,准确率和稳定性优于传统的U-Net模型和对比算法,同时适用于资源受限的环境。实验证明所提模型能够更有效地实现磁共振影像上的海马体分割。 展开更多
关键词 海马体图像分割 卷积神经网络 u-net Triplet Attention 注意力机制 体积融合网络
在线阅读 下载PDF
基于U^(2)-Net和CBAM融合注意力的双模态睡眠分期研究 被引量:1
9
作者 赵倩 李锦 +2 位作者 凤飞龙 强宁 胡静 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期1-11,共11页
针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Ne... 针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Net网络并行提取EEG和ECG中的波形特征;其次,利用CBAM融合注意力对全部特征进行权重分配;最后,使用Softmax激活函数对睡眠时期进行六分类。结果表明:基于U^(2)-Net和CBAM融合注意力模型进行睡眠分期时,使用ECG单模态信号的六分类总体准确率为80.2%,F1分数为75.3%;使用EEG单模态信号的六分类总体准确率为85.8%,F1分数为81.7%;使用EEG-ECG双模态信号的六分类总体准确率为90.4%,F1分数为85.6%。提出的双模态睡眠分期模型是可行有效的,并且为自动睡眠分期提供了一种新的思路。 展开更多
关键词 自动睡眠分期 EEG-ECG双模态信号 u^(2)-net网络 CBAM融合注意力
在线阅读 下载PDF
融合U-net网络的纯卷积视频预测模型 被引量:1
10
作者 谢玉枚 蔡远利 +2 位作者 高海燕 关翔锋 唐伟强 《西安交通大学学报》 北大核心 2025年第6期112-121,共10页
为了解决基于深度学习视频预测中存在的时空特征提取不充分以及图像细节保留不足的问题,运用简单视频预测网络模型SimVP给出的Inception单元,提出了一种融合U-net网络的纯卷积视频预测模型(CUnet)。CUnet模型由3个核心模块组成:首先,Cel... 为了解决基于深度学习视频预测中存在的时空特征提取不充分以及图像细节保留不足的问题,运用简单视频预测网络模型SimVP给出的Inception单元,提出了一种融合U-net网络的纯卷积视频预测模型(CUnet)。CUnet模型由3个核心模块组成:首先,Cell模块采用2D卷积层来提取空间特征,并将这些特征输入至多个Inception单元捕获时空特性;其次,DeCell模块通过Inception单元捕获时空特征,并借助2D反卷积层进行上采样操作,恢复图像原始尺寸;最后,引入U-net作为主干网络,将Cell模块和DeCell模块有机整合,有效保留了图像的细节信息,实现了高质量的图像重建。实验结果表明:在TaxiBJ数据集上,与当前表现最佳的时间注意力单元网络模型TAU相比,CUnet模型的预测精度提高了5.23%;在Human3.6M数据集上,与当前表现最佳的快速傅里叶Inception网络模型FFINet相比,CUnet模型的预测精度提高了12.88%。CUnet模型具有优秀的预测能力,可为纯卷积神经网络模型在视频预测领域的应用提供有益探索。 展开更多
关键词 深度学习 视频预测 时空特征 u-net网络 纯卷积神经网络
在线阅读 下载PDF
基于改进U-Net神经网络的独栋建筑屋顶可建光伏区域提取方法 被引量:1
11
作者 赵睿恺 欧阳森 谢运祥 《电子设计工程》 2025年第9期1-6,共6页
针对屋顶光伏目前呈现规模化接入配电网的趋势,光伏容量的准确计算变得愈发重要。为解决独栋屋顶数据缺乏的问题,利用无人机航拍照片自制了屋顶异物信息清晰且分类明确的高精度屋顶数据集;为了有效剔除屋顶异物,以分割精度较高的U-Net... 针对屋顶光伏目前呈现规模化接入配电网的趋势,光伏容量的准确计算变得愈发重要。为解决独栋屋顶数据缺乏的问题,利用无人机航拍照片自制了屋顶异物信息清晰且分类明确的高精度屋顶数据集;为了有效剔除屋顶异物,以分割精度较高的U-Net为基准,融合AG注意力机制和双层特征金字塔FPN,从而将注意力集中于感兴趣区域,更好地剔除屋顶异物;为了避免小样本输入下的过拟合问题,在卷积层后引入循环残差卷积模块,设计了能够更高效、准确获取可建光伏区域的R2AttU-Net网络;设计消融实验证明了文中改进的R2AttU-Net在准确度、交并比、F1分数等指标上均有显著提升,并完成了对预测区的屋顶可建光伏区域的提取。 展开更多
关键词 独栋屋顶样本库 改进u-net神经网络 注意力机制 区域提取
在线阅读 下载PDF
基于U-Net神经网络的三维辐射场重建方法研究
12
作者 靳海晶 李华 +7 位作者 刘立业 陈法国 赵日 樊清 刘鑫 梁润成 李会 赵原 《原子能科学技术》 北大核心 2025年第S2期517-526,共10页
核设施辐射防护管理的数字化升级依赖于精准的三维辐射场重建技术,而近年来,基于神经网络的辐射场重建方法展现出潜力。因全连接神经网络本身缺乏空间感知的局限性,本文提出一种稀疏输入-密集输出的U-Net结构,利用其编码-解码架构和跳... 核设施辐射防护管理的数字化升级依赖于精准的三维辐射场重建技术,而近年来,基于神经网络的辐射场重建方法展现出潜力。因全连接神经网络本身缺乏空间感知的局限性,本文提出一种稀疏输入-密集输出的U-Net结构,利用其编码-解码架构和跳跃连接机制,有效捕捉三维辐射场的空间相关性。通过构建“单屏蔽+单源项”简单场景与“多屏蔽+多源项”复杂场景,结合自研点核积分程序生成数据集,对比了U-Net与全连接网络的性能。结果表明:在简单场景中,U-Net的平均绝对百分比误差(MAPE)为4.48%,而全连接网络的MAPE为6.74%;在复杂场景中,U-Net的MAPE为7.50%,全连接网络的MAPE为21.99%。U-Net在三维辐射场重建,尤其是复杂场景的辐射场重建上具有显著优势,验证了其在复杂屏蔽与多源项环境中的应用价值。 展开更多
关键词 辐射场重建 神经网络 u-net 全连接神经网络
在线阅读 下载PDF
基于Farneback光流法和U-Net网络的雷达短临降雨预报研究
13
作者 张淞淋 柴志勇 李建柱 《水文》 北大核心 2025年第3期1-8,16,共9页
雷达观测的降雨数据相比雨量站观测的降雨数据更能反映降雨的时空分布,对研究流域的产汇流机理、延长洪水预报预见期有重要意义。为研究雷达在流域短临降雨预报的潜力,基于柳林实验流域雷达回波图像数据集,采用Farneback光流法和U-Net... 雷达观测的降雨数据相比雨量站观测的降雨数据更能反映降雨的时空分布,对研究流域的产汇流机理、延长洪水预报预见期有重要意义。为研究雷达在流域短临降雨预报的潜力,基于柳林实验流域雷达回波图像数据集,采用Farneback光流法和U-Net网络模型对雷达回波图像进行不同时间的外推,并基于动态Z-R关系对降雨进行定量估计,将短临降雨预报结果与雨量站实测数据进行对比分析。结果表明:在30 min预见期下,Farneback光流法的预报效果更好,POD达到0.933;而1 h和2 h预见期下,U-Net网络预报效果更佳,POD分别为0.956和0.948。Farneback光流法随着预见期延长,预报效果显著下降,U-Net网络预报效果与预见期关系不密切。 展开更多
关键词 短临降雨预报 雷达回波外推 Farneback光流法 u-net网络 动态Z-R关系
在线阅读 下载PDF
基于优化U-Net神经网络模型在医学图像分割的应用 被引量:1
14
作者 张筱旭 邵英龙 +1 位作者 严孟慧 王健庆 《现代信息科技》 2025年第4期47-52,共6页
医学图像是临床诊断的重要参考,如何快速且准确地分割出医学图像中的病灶区域,受到了人们的广泛关注。当前,利用深度学习进行图像处理已成为主流,医学图像分割因其独特的应用场景,成为深度学习在图像处理领域应用的成功范例。U-Net网络... 医学图像是临床诊断的重要参考,如何快速且准确地分割出医学图像中的病灶区域,受到了人们的广泛关注。当前,利用深度学习进行图像处理已成为主流,医学图像分割因其独特的应用场景,成为深度学习在图像处理领域应用的成功范例。U-Net网络凭借其特有的U型结构,在医学图像分割领域取得了不错的性能,但该网络仍存在精度不够高等问题。文章对基于优化U-Net模型的医学图像自动分割方法展开研究,将CBAM(Convolutional Block Attention Module)和SE(Squeeze-and-Excitation)模块与U-Net网络结构相结合,实现了对人体器官的高度准确分割。在眼球数据集上的实验结果表明,优化后的U-Net网络相较于单纯的U-Net网络,准确率更高(0.905)。该研究具有重要的临床应用前景,能够对人体器官、病变区域等目标进行有效分割,为医疗实践带来积极影响。 展开更多
关键词 u-net神经网络 图像分割 医学图像 注意力机制
在线阅读 下载PDF
基于级联Transformer和U-Net的MRI肝脏图像分割
15
作者 张天森 徐晓娜 +1 位作者 赵悦 张新宁 《计算机工程》 北大核心 2025年第10期308-318,共11页
实现精准的磁共振成像(MRI)肝脏图像分割在医学领域具有重要意义,不仅可有效协助医生迅速定位目标区域、辅助治疗,也可以在术后观察中发挥关键作用。然而MRI图像包含丰富的语义信息和众多异常噪声,而传统卷积操作在图像处理中存在一定... 实现精准的磁共振成像(MRI)肝脏图像分割在医学领域具有重要意义,不仅可有效协助医生迅速定位目标区域、辅助治疗,也可以在术后观察中发挥关键作用。然而MRI图像包含丰富的语义信息和众多异常噪声,而传统卷积操作在图像处理中存在一定的局限性,其全局建模能力与感受野有限,难以捕捉全局信息。并且,基于卷积的网络层次不宜过深,因为深层网络既会增加参数量,也会缺失高分辨率下的重要语义信息。为了解决这些问题,引入Transformer机制以建立全局信息关联,从而更好地捕捉全局信息,实现目标的精准定位。但Transformer在处理图像细节特征方面存在可能破坏局部细节的问题,且其在提供归纳偏置方面表现欠佳。为了综合利用Transformer和卷积的优势,提出一种级联工作的特征建模方法。首先,通过使用参数量和计算量较少的MedT(Medical Transformer)网络作为上游网络,实现对感兴趣区域(RoI)的粗分割。然后,对提取的RoI进行数据处理,并送入下游的U-Net进行二次分割,在第二次分割的过程中特别关注局部信息,以获得更精细的预测结果。在CHAOS数据集上的实验结果证明,该方法在肝脏分割任务中取得了显著的成果,肝脏的Dice相似系数(DSC)达到0.922,交并比(IoU)达到0.877。 展开更多
关键词 肝脏分割 Medical Transformer网络 u-net结构 磁共振成像 级联
在线阅读 下载PDF
面向腺体组织病理学图像分割的改进U2-Net模型
16
作者 张正旭 陈庆奎 +1 位作者 付直兵 黄陈 《小型微型计算机系统》 北大核心 2025年第4期914-921,共8页
结直肠癌是全球癌症患病人数当中致死率最高的癌症之一,为提高结直肠腺体的分割准确率,本文把U2-Net引入到医学图像分割领域,并对其改进以提高分割效果.首先,为减弱下采样带来的细节特征丢失和上采样时插值误差,在RSU内部的桥接处引入A... 结直肠癌是全球癌症患病人数当中致死率最高的癌症之一,为提高结直肠腺体的分割准确率,本文把U2-Net引入到医学图像分割领域,并对其改进以提高分割效果.首先,为减弱下采样带来的细节特征丢失和上采样时插值误差,在RSU内部的桥接处引入ASPP模块并且使用深度可分离卷积替换普通卷积以提高有效特征的提取能力同时减少参数量;其次,在外层解码器阶段引入了注意力机制以加强特征间的融合,减少因跳跃连接而丢失的空间信息;最终,把交叉熵损失和Dice相结合作为最终损失函数来解决类不平衡问题.在SJTU_GSFPH数据集与U2-Net相比F1-Score和Dice分别提升了1.43和1.03,HD降低了10.93;在GlaS数据集中与U2-Net相比Dice提升了1.29,HD降低了3.82.实验结果表明,本文方法有效提升了结直肠腺体分割的精准度. 展开更多
关键词 u2-net 结直肠 医学图像分割 DICE
在线阅读 下载PDF
基于改进U-Net网络的钻孔图像结构面智能识别
17
作者 熊阳阳 陈海军 +1 位作者 韩增强 陈双源 《隧道建设(中英文)》 北大核心 2025年第S2期269-279,共11页
针对深埋隧道工程中钻孔图像结构面识别面临的形态多样性、跨尺度特征耦合及复杂噪声干扰等难题,提出一种基于改进U-Net的深度学习模型,实现结构面自动语义分割与几何参数定量表征。针对传统卷积网络固定感受野的局限性,在编码器路径中... 针对深埋隧道工程中钻孔图像结构面识别面临的形态多样性、跨尺度特征耦合及复杂噪声干扰等难题,提出一种基于改进U-Net的深度学习模型,实现结构面自动语义分割与几何参数定量表征。针对传统卷积网络固定感受野的局限性,在编码器路径中引入动态蛇形卷积(DSConv),通过自适应变形采样增强对不规则结构面的几何特征提取能力;在解码器路径融合高效通道注意力(ECA)机制,提升模型对关键通道特征的敏感度。基于自主构建的钻孔图像数据集(含770张图像),采用2阶段训练策略优化模型。试验结果表明,模型在验证集上的平均交并比达68.44%,总体像素准确率达93.94%,结构面类别的分割精确度为86.12%。进一步结合正弦曲线拟合算法,从分割结果中自动提取结构面倾向、倾角及宽度参数,其计算结果与人工测量值的平均误差小于2%。本研究通过深度学习与几何建模的融合,显著提升了复杂地质条件下结构面识别的精度与效率,为岩体稳定性定量分析提供了可靠的技术支撑,推动了地质勘察从经验判断向智能化的范式转变。 展开更多
关键词 钻孔图像 结构面 智能识别 深度学习 u-net网络模型
在线阅读 下载PDF
基于U-Net网络与卡尔曼滤波的瞳孔检测跟踪算法 被引量:1
18
作者 张国静 王桂祥 《现代电子技术》 北大核心 2025年第9期137-142,共6页
眼动跟踪是人机交互(HCI)及其应用的重要技术之一,越来越受到人们的重视。然而,在实际情况下往往受到大量非高斯噪声的影响,如不可控的光照、人眼的遮挡及连续的人眼移动等,这会导致瞳孔检测实时性和准确性的下降。因此,文中设计了一种... 眼动跟踪是人机交互(HCI)及其应用的重要技术之一,越来越受到人们的重视。然而,在实际情况下往往受到大量非高斯噪声的影响,如不可控的光照、人眼的遮挡及连续的人眼移动等,这会导致瞳孔检测实时性和准确性的下降。因此,文中设计了一种基于U-Net语义分割网络的瞳孔检测方法。首先,利用该方法对瞳孔区域进行分割;然后对分割的瞳孔区域处理,确定其质心位置,达到瞳孔中心定位的目的;最后,又提出了一种改进的卡尔曼滤波器的稳态增益,通过在卡尔曼增益上引入分数阶反馈环路来实现,并利用改进的卡尔曼滤波器对瞳孔位置进行跟踪,消除非高斯噪声,可以大大提高瞳孔在线稳定检测的准确性。实验结果表明,所提方法能够实时跟踪人眼,具有较高的精确度和鲁棒性,且最佳均方根误差(RMSE)可达到0.78。 展开更多
关键词 眼动跟踪 人机交互 非高斯噪声 u-net网络 语义分割 瞳孔检测 分数阶 卡尔曼滤波
在线阅读 下载PDF
基于改进U-Net模型的露天矿钻孔裂隙识别研究
19
作者 宋纹瑶 张梅 +3 位作者 郭连军 邓丁 高崇 赵鑫 《矿冶工程》 北大核心 2025年第4期47-51,57,共6页
为提高钻孔图像裂隙识别精度,提出了一种露天矿钻孔裂隙识别方法,利用智能钻孔摄像技术获取露天矿钻孔图像,并运用随机裁剪和图像翻转进行数据增广,同时采用中值滤波降噪和图像灰度化,去除噪点及减少计算量。在U-Net模型中利用空间注意... 为提高钻孔图像裂隙识别精度,提出了一种露天矿钻孔裂隙识别方法,利用智能钻孔摄像技术获取露天矿钻孔图像,并运用随机裁剪和图像翻转进行数据增广,同时采用中值滤波降噪和图像灰度化,去除噪点及减少计算量。在U-Net模型中利用空间注意力和通道注意力机制改进钻孔裂隙语义分割模型,形成AU-Net模型,以强化图像全局和局部信息的特征提取能力。实验结果表明:AU-Net模型相较于U-Net模型在钻孔图像裂隙识别数据集上可以取得更低的损失、更高的精度,均交并比提高了4.38百分点,达到82.34%,图像分割效果更好。 展开更多
关键词 钻孔成像 裂隙识别 u-net网络 注意力机制 裂隙提取 机器学习 语义分割 图像识别
在线阅读 下载PDF
基于U^(2)-Net的岩体内部结构面智能识别研究
20
作者 白万明 赵宇 +2 位作者 刘艳彪 马骏 徐帅 《金属矿山》 北大核心 2025年第4期219-225,共7页
结构面对于岩体力学行为和变形破坏机制具有重要影响。快速精确获取结构面分布特征和参数信息对于深部工程岩体稳定性和灾害孕育机制分析具有重要意义。钻孔摄像是一种岩体内部结构面探测新技术,但对钻孔图像中结构面的识别仍以人工辨... 结构面对于岩体力学行为和变形破坏机制具有重要影响。快速精确获取结构面分布特征和参数信息对于深部工程岩体稳定性和灾害孕育机制分析具有重要意义。钻孔摄像是一种岩体内部结构面探测新技术,但对钻孔图像中结构面的识别仍以人工辨识为主,存在工作量大、处理速度慢与人为误差大等问题。基于此,开展了基于U^(2)-Net卷积神经网络的钻孔图像结构面智能识别研究。首先收集20个钻孔1013张钻孔图像;其次,应用图像翻转、色彩抖动、模糊处理和Mixup等数据扩充方法,将数据集扩充到12421张,建立钻孔摄像数据集,解决结构面分割网络训练过程中样本不足的问题;然后,基于深度学习框架PyTorch,设置学习率0.001,训练批次为4,使用Adam优化器,在训练过程中自适应调整学习率,建立结构面智能识别模型;模型在置信度阈值为0.7时F度量值达到了最大值0.749,在召回率大于0.5范围内精确率最高可达0.85,实现了结构面区域的完整分割。与人工识别方式相比,在重合度50%的条件下,U^(2)-Net网络识别率达到了94.8%,表明该网络具有较高的识别精确率与一定的泛化性。 展开更多
关键词 钻孔摄像 结构面 智能提取 u2-net卷积神经网络
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部