Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other m...Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.展开更多
With the advancement of human-computer interaction,surface electromyography(sEMG)-based gesture recognition has garnered increasing attention.However,effectively utilizing the spatio-temporal dependencies in sEMG sign...With the advancement of human-computer interaction,surface electromyography(sEMG)-based gesture recognition has garnered increasing attention.However,effectively utilizing the spatio-temporal dependencies in sEMG signals and integrating multiple key features remain significant challenges for existing techniques.To address this issue,we propose a model named the Two-Stream Hybrid Spatio-Temporal Fusion Network(TS-HSTFNet).Specifically,we design a dynamic spatio-temporal graph convolution module that employs an adaptive dynamic adjacency matrix to explore the spatial dynamic patterns in the sEMG signals fully.Additionally,a spatio-temporal attention fusion module is designed to fully utilize the potential correlations among multiple features for the final fusion.The results indicate that the proposed TS-HSTFNet model achieves 84.96%and 88.08%accuracy on the Ninapro DB2 and Ninapro DB5 datasets,respectively,demonstrating high precision in gesture recognition.Our work emphasizes the importance of extracting spatio-temporal features in gesture recognition and provides a novel approach for multi-source information fusion.展开更多
Indirect heating and intensified digestion technology can be applied to reduce greatly the energy consumption in Bayer process of diasporic bauxite. A great advantage of two-stream process is to avoid or reduce effici...Indirect heating and intensified digestion technology can be applied to reduce greatly the energy consumption in Bayer process of diasporic bauxite. A great advantage of two-stream process is to avoid or reduce efficiently serious scaling problem of bauxite slurry on indirect heating surface, which certainly happens in the single stream process and brings about great troubles to the indirect heating. As a result of a great number of experiments and the theoretical analysis, a new lime adding technology for the two-stream digestion process is developed in this paper that lime is added into spent liquor stream instead of bauxite slurry, which is more suitable to the two-stream process of diasporic bauxite. The influences of the new lime addition technology on preheating and digestion process were discussed. It was deduced that the new technology can be used efficiently in the two-stream process of non-diasporic bauxite.展开更多
Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. Th...Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. The parallel cuts of the parallel and perpendicular electric field have bipolar and unipolar structures in these electron holes, respectively. In this study, two-dimensional (2D) electromagnetic PIC simulations are performed in the x - y plane to investigate the evolution of the electron two-stream instability, with the emphasis on the magnetic structures associated with these electron holes in different plasma conditions. In the simulations, the background magnetic field (Bo = Boer) is along the x direction. In weakly magnetized plasma (Ωe 〈ωpe, where Ωe and ωpe are the electron gyrofrequency and electron plasma frequency, respectively), several 2D electron holes are formed. In these 2D electron holes, the parallel cut of the fluctuating magnetic field δBx and δBz has unipolar structures, while the fluctuating magnetic field δBy has bipolar structures. In strongly magnetized plasma (Ωe 〉 ωpe), several quasi-lD electron holes are formed. The electrostatic whistler waves with streaked structures of Ey are excited. The fluctuating mag- netic field δBx and δBz also have streaked structures. The fluctuating magnetic field δBx and δBy are produced by the current in the z direction due to the electric field drift of the trapped elec- trons, while the fluctuating magnetic field δBz can be explained by the Lorentz transformation of a moving quasielectrostatic structure. The influences of the initial temperature anisotropy on the magnetic structures of the electron holes are also analyzed. The electromagnetic whistler waves are found to be excited in weakly magnetized plasma. However, they do not have any significant effects on the electrostatic structures of the electron holes.展开更多
Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the p...Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell(PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem,especially in a strongly magnetized plasma(Ω_e >ω_(pe), where Ω_e is defined as electron gyrofrequency and ω_(pe) is defined as plasma frequency, respectively). In this paper, with two-dimensional(2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut. of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.展开更多
We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found ...We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.展开更多
A theory for a two-stream free-electron laser (FEL) with an electromagnetic wiggler (EMW) and axial guide magnetic field is developed. In the analysis, the effects of self-fields are taken into account. The growth...A theory for a two-stream free-electron laser (FEL) with an electromagnetic wiggler (EMW) and axial guide magnetic field is developed. In the analysis, the effects of self-fields are taken into account. The growth rate is derived. The characteristics of the growth rate are studied numerically. The dependence of the normalized wave number, which corresponds to the maximum growth rate, on the cyclotron frequency is presented. The comparisons between the normalized maximum growth rate and its corresponding wave number normalized by employing the axial magnetic field, for the cases with and without self-fields in the two-stream FEL are studied numerically.展开更多
The haze weather environment leads to the deterioration of the visual effect of the image,and it is difficult to carry out the work of the advanced vision task.Therefore,dehazing the haze image is an important step be...The haze weather environment leads to the deterioration of the visual effect of the image,and it is difficult to carry out the work of the advanced vision task.Therefore,dehazing the haze image is an important step before the execution of the advanced vision task.Traditional dehazing algorithms achieve image dehazing by improving image brightness and contrast or constructing artificial priors such as color attenuation priors and dark channel priors.However,the effect is unstable when dealing with complex scenes.In the method based on convolutional neural network,the image dehazing network of the encoding and decoding structure does not consider the difference before and after the dehazing image,and the image spatial information is lost in the encoding stage.In order to overcome these problems,this paper proposes a novel end-to-end two-stream convolutional neural network for single-image dehazing.The network model is composed of a spatial information feature stream and a highlevel semantic feature stream.The spatial information feature stream retains the detailed information of the dehazing image,and the high-level semantic feature stream extracts the multi-scale structural features of the dehazing image.A spatial information auxiliary module is designed and placed between the feature streams.This module uses the attention mechanism to construct a unified expression of different types of information and realizes the gradual restoration of the clear image with the semantic information auxiliary spatial information in the dehazing network.A parallel residual twicing module is proposed,which performs dehazing on the difference information of features at different stages to improve the model’s ability to discriminate haze images.The peak signal-to-noise ratio(PSNR)and structural similarity are used to quantitatively evaluate the similarity between the dehazing results of each algorithm and the original image.The structure similarity and PSNR of the method in this paper reached 0.852 and 17.557dB on the HazeRD dataset,which were higher than existing comparison algorithms.On the SOTS dataset,the indicators are 0.955 and 27.348dB,which are sub-optimal results.In experiments with real haze images,this method can also achieve excellent visual restoration effects.The experimental results show that the model proposed in this paper can restore desired visual effects without fog images,and it also has good generalization performance in real haze scenes.展开更多
We construct a cubically nonlinear theory of plural interactions between harmonics of the growing space charge wave(SCW) during the development of the two-stream instability. It is shown that the SCW with a wide fre...We construct a cubically nonlinear theory of plural interactions between harmonics of the growing space charge wave(SCW) during the development of the two-stream instability. It is shown that the SCW with a wide frequency spectrum is formed when the frequency of the first SCW harmonic is much lower than the critical frequency of the two-stream instability.Such SCW has part of the spectrum in which higher harmonics have higher amplitudes. We analyze the dynamics of the plural harmonic interactions of the growing SCW and define the saturation harmonic levels. We find the mechanisms of forming the multiharmonic SCW for the waves with frequencies lower than the critical frequency and for the waves with frequencies that exceed the critical frequency.展开更多
We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relati...We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam(REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.展开更多
We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the ...We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the electron beam, the efficiency and the output power, a slot-hole loaded rectangular waveguide structure used as the high-frequency system is proposed. Based on the mechanism of the backward-wave oscillator, a slow-wave oscillator with a frequency of 0.14 THz is designed. The simulations show that the output power and the efficiency of the oscillator can be enhanced due to the coupling between the two beams through the slot holes. The interaction efficiency is 5.18%, and the starting current density is below 5 A. cm^-2 for the two beams. These attractive results indicate that, based on the two-stream backward-wave oscillator, we can get short millimeter wave sources with high power and low current density.展开更多
A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron...A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear-gain, and the normalised maximum gain are studied numerically. The results show that there are nine stable groups of orbits in the presence of self-fields instead of seven groups reported in the absence of the self-field. It is also shown that the normalised gains of four groups of the orbits are decreasing and those for the rest of them are increasing with growing J20. Furthermore, it is found that the two-stream laser with seff-field enhances the maximum gain in comparison with the single stream case.展开更多
A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron t...A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.展开更多
A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-s...A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.展开更多
The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron t...The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron trajectories is given by solving the equation of motion in the presence of ion-channel guiding and the planar wiggler. The electron trajectories and the gain are derived. The stability of the trajectories, the characteristics of the linear gain, and the normalized maximum gain are studied numerically. The numerical calculations show that there are eight group trajectories rather than the two groups reported in the absence of the self-fields. It is also shown that the normalized gain group seven (G7) decreases while the rest increases with the increase in normalized ion-channel frequency. The two-stream instability and the self-field lead to a decrease in the maximum gain, except for G7.展开更多
The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and ...The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and investigated. In the analysis, the effects of self-fields are taken into account. The electron trajectories and the small signal gain are derived. The characteristics of the linear-gain and the normalized maximum gain are studied numerically. The results show that there are seven stable groups of orbits in the presence of self-fields instead of two groups reported in the absence of the self-fields. It is also shown that the normalized gains of three groups decrease while the rest increase with the increasing of normalized cyclotron frequency g20. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 3. The results show that the normalized maximum gain is enhanced in comparison with that of the single stream.展开更多
Effective and accurate action recognition is essential to the intelligent breeding of the Jinnan cattle.However,there are still several challenges in the current Jinnan cattle action recognition.Traditional methods ar...Effective and accurate action recognition is essential to the intelligent breeding of the Jinnan cattle.However,there are still several challenges in the current Jinnan cattle action recognition.Traditional methods are based on manual characteristics and low recognition accuracy.This study is aimed at the efficient and accurate development of Jinnan cattle action recognition methods to overcome existing problems and support intelligent breeding.The acquired data from the previous methods contain a lot of noise,which will cause individual cattle to have excessive behaviors due to unsuitability.Concerning the high labor costs,low efficiency,and low model accuracy of the above approaches,this study developed a bottleneck attention-enhanced two-stream(BATS)Jinnan cattle action recognition method.It primarily comprises a Spatial Stream Subnetwork,a Temporal Stream Subnetwork,and a Bottleneck Attention Module.It can capture the spatial-channel dependencies in RGB and optical flow two branches respectively,so as to extract richer and more robust features.Finally,the decision of the two branches can be fused to gain improved cattle action recognition performance.Compared with the traditional methods,the model proposed in this study has achieved state-of-the-art recognition performance,and the accuracy of motion recognition was 96.53%,which was 4.60%higher than other models.This method significantly improves the efficiency and accuracy of behavior recognition and provides an important research foundation and direction for the development of higher-level behavior analysis models in the future development of smart animal husbandry.展开更多
文摘Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.
基金Funding from the Key Research and development plan of Shaanxi Province"Human robot interaction technology and implementation of bionic robotic arm based on remote operation"(2023-ZDLGY-24).
文摘With the advancement of human-computer interaction,surface electromyography(sEMG)-based gesture recognition has garnered increasing attention.However,effectively utilizing the spatio-temporal dependencies in sEMG signals and integrating multiple key features remain significant challenges for existing techniques.To address this issue,we propose a model named the Two-Stream Hybrid Spatio-Temporal Fusion Network(TS-HSTFNet).Specifically,we design a dynamic spatio-temporal graph convolution module that employs an adaptive dynamic adjacency matrix to explore the spatial dynamic patterns in the sEMG signals fully.Additionally,a spatio-temporal attention fusion module is designed to fully utilize the potential correlations among multiple features for the final fusion.The results indicate that the proposed TS-HSTFNet model achieves 84.96%and 88.08%accuracy on the Ninapro DB2 and Ninapro DB5 datasets,respectively,demonstrating high precision in gesture recognition.Our work emphasizes the importance of extracting spatio-temporal features in gesture recognition and provides a novel approach for multi-source information fusion.
文摘Indirect heating and intensified digestion technology can be applied to reduce greatly the energy consumption in Bayer process of diasporic bauxite. A great advantage of two-stream process is to avoid or reduce efficiently serious scaling problem of bauxite slurry on indirect heating surface, which certainly happens in the single stream process and brings about great troubles to the indirect heating. As a result of a great number of experiments and the theoretical analysis, a new lime adding technology for the two-stream digestion process is developed in this paper that lime is added into spent liquor stream instead of bauxite slurry, which is more suitable to the two-stream process of diasporic bauxite. The influences of the new lime addition technology on preheating and digestion process were discussed. It was deduced that the new technology can be used efficiently in the two-stream process of non-diasporic bauxite.
基金supported by Ocean Public Welfare Scientific Research Project, State Oceanic Administration People’s Republic of China(No. 201005017)National Natural Science Foundation of China (Nos. 41274144, 41174124, 40931053, 41121003)+1 种基金CAS Key Research Program KZZD-EW-01,973 Program (2012CB825602)the Fundamental Research Funds for the Central Universities(WK2080000010)
文摘Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. The parallel cuts of the parallel and perpendicular electric field have bipolar and unipolar structures in these electron holes, respectively. In this study, two-dimensional (2D) electromagnetic PIC simulations are performed in the x - y plane to investigate the evolution of the electron two-stream instability, with the emphasis on the magnetic structures associated with these electron holes in different plasma conditions. In the simulations, the background magnetic field (Bo = Boer) is along the x direction. In weakly magnetized plasma (Ωe 〈ωpe, where Ωe and ωpe are the electron gyrofrequency and electron plasma frequency, respectively), several 2D electron holes are formed. In these 2D electron holes, the parallel cut of the fluctuating magnetic field δBx and δBz has unipolar structures, while the fluctuating magnetic field δBy has bipolar structures. In strongly magnetized plasma (Ωe 〉 ωpe), several quasi-lD electron holes are formed. The electrostatic whistler waves with streaked structures of Ey are excited. The fluctuating mag- netic field δBx and δBz also have streaked structures. The fluctuating magnetic field δBx and δBy are produced by the current in the z direction due to the electric field drift of the trapped elec- trons, while the fluctuating magnetic field δBz can be explained by the Lorentz transformation of a moving quasielectrostatic structure. The influences of the initial temperature anisotropy on the magnetic structures of the electron holes are also analyzed. The electromagnetic whistler waves are found to be excited in weakly magnetized plasma. However, they do not have any significant effects on the electrostatic structures of the electron holes.
基金Supported by the National Science Foundation of China(41474125,41331067,41421063)973 Program(2013CBA01503)Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-DQC010)
文摘Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell(PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem,especially in a strongly magnetized plasma(Ω_e >ω_(pe), where Ω_e is defined as electron gyrofrequency and ω_(pe) is defined as plasma frequency, respectively). In this paper, with two-dimensional(2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut. of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.
基金Supported by the Ministry of Education and Science of Ukraine under Grant No 0117U002253
文摘We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.
文摘A theory for a two-stream free-electron laser (FEL) with an electromagnetic wiggler (EMW) and axial guide magnetic field is developed. In the analysis, the effects of self-fields are taken into account. The growth rate is derived. The characteristics of the growth rate are studied numerically. The dependence of the normalized wave number, which corresponds to the maximum growth rate, on the cyclotron frequency is presented. The comparisons between the normalized maximum growth rate and its corresponding wave number normalized by employing the axial magnetic field, for the cases with and without self-fields in the two-stream FEL are studied numerically.
基金supported by the National Natural Science Foundationof China under Grant No. 61803061, 61906026Innovation research groupof universities in Chongqing+4 种基金the Chongqing Natural Science Foundationunder Grant cstc2020jcyj-msxmX0577, cstc2020jcyj-msxmX0634“Chengdu-Chongqing Economic Circle” innovation funding of Chongqing Municipal Education Commission KJCXZD2020028the Science andTechnology Research Program of Chongqing Municipal Education Commission grants KJQN202000602Ministry of Education China MobileResearch Fund (MCM 20180404)Special key project of Chongqingtechnology innovation and application development: cstc2019jscxzdztzx0068.
文摘The haze weather environment leads to the deterioration of the visual effect of the image,and it is difficult to carry out the work of the advanced vision task.Therefore,dehazing the haze image is an important step before the execution of the advanced vision task.Traditional dehazing algorithms achieve image dehazing by improving image brightness and contrast or constructing artificial priors such as color attenuation priors and dark channel priors.However,the effect is unstable when dealing with complex scenes.In the method based on convolutional neural network,the image dehazing network of the encoding and decoding structure does not consider the difference before and after the dehazing image,and the image spatial information is lost in the encoding stage.In order to overcome these problems,this paper proposes a novel end-to-end two-stream convolutional neural network for single-image dehazing.The network model is composed of a spatial information feature stream and a highlevel semantic feature stream.The spatial information feature stream retains the detailed information of the dehazing image,and the high-level semantic feature stream extracts the multi-scale structural features of the dehazing image.A spatial information auxiliary module is designed and placed between the feature streams.This module uses the attention mechanism to construct a unified expression of different types of information and realizes the gradual restoration of the clear image with the semantic information auxiliary spatial information in the dehazing network.A parallel residual twicing module is proposed,which performs dehazing on the difference information of features at different stages to improve the model’s ability to discriminate haze images.The peak signal-to-noise ratio(PSNR)and structural similarity are used to quantitatively evaluate the similarity between the dehazing results of each algorithm and the original image.The structure similarity and PSNR of the method in this paper reached 0.852 and 17.557dB on the HazeRD dataset,which were higher than existing comparison algorithms.On the SOTS dataset,the indicators are 0.955 and 27.348dB,which are sub-optimal results.In experiments with real haze images,this method can also achieve excellent visual restoration effects.The experimental results show that the model proposed in this paper can restore desired visual effects without fog images,and it also has good generalization performance in real haze scenes.
文摘We construct a cubically nonlinear theory of plural interactions between harmonics of the growing space charge wave(SCW) during the development of the two-stream instability. It is shown that the SCW with a wide frequency spectrum is formed when the frequency of the first SCW harmonic is much lower than the critical frequency of the two-stream instability.Such SCW has part of the spectrum in which higher harmonics have higher amplitudes. We analyze the dynamics of the plural harmonic interactions of the growing SCW and define the saturation harmonic levels. We find the mechanisms of forming the multiharmonic SCW for the waves with frequencies lower than the critical frequency and for the waves with frequencies that exceed the critical frequency.
基金supported by the Ministry of Education and Science of Ukraine under Grant No.0117U002253
文摘We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam(REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075032 and 10975031)
文摘We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the electron beam, the efficiency and the output power, a slot-hole loaded rectangular waveguide structure used as the high-frequency system is proposed. Based on the mechanism of the backward-wave oscillator, a slow-wave oscillator with a frequency of 0.14 THz is designed. The simulations show that the output power and the efficiency of the oscillator can be enhanced due to the coupling between the two beams through the slot holes. The interaction efficiency is 5.18%, and the starting current density is below 5 A. cm^-2 for the two beams. These attractive results indicate that, based on the two-stream backward-wave oscillator, we can get short millimeter wave sources with high power and low current density.
文摘A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear-gain, and the normalised maximum gain are studied numerically. The results show that there are nine stable groups of orbits in the presence of self-fields instead of seven groups reported in the absence of the self-field. It is also shown that the normalised gains of four groups of the orbits are decreasing and those for the rest of them are increasing with growing J20. Furthermore, it is found that the two-stream laser with seff-field enhances the maximum gain in comparison with the single stream case.
文摘A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.
基金Project supported by the Plasma Physics Research Center,Science and Research Branch,Islamic Azad University
文摘A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.
基金supported by the Plasma Physics Research Center, Science and Research Branch, Islamic Azad University
文摘The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron trajectories is given by solving the equation of motion in the presence of ion-channel guiding and the planar wiggler. The electron trajectories and the gain are derived. The stability of the trajectories, the characteristics of the linear gain, and the normalized maximum gain are studied numerically. The numerical calculations show that there are eight group trajectories rather than the two groups reported in the absence of the self-fields. It is also shown that the normalized gain group seven (G7) decreases while the rest increases with the increase in normalized ion-channel frequency. The two-stream instability and the self-field lead to a decrease in the maximum gain, except for G7.
文摘The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and investigated. In the analysis, the effects of self-fields are taken into account. The electron trajectories and the small signal gain are derived. The characteristics of the linear-gain and the normalized maximum gain are studied numerically. The results show that there are seven stable groups of orbits in the presence of self-fields instead of two groups reported in the absence of the self-fields. It is also shown that the normalized gains of three groups decrease while the rest increase with the increasing of normalized cyclotron frequency g20. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 3. The results show that the normalized maximum gain is enhanced in comparison with that of the single stream.
基金supported by the Shanxi Province Basic Research Program(Grant No.202203021212444)Shanxi Agricultural University Science and Technology Innovation Enhancement Project(Grant No.CXGC2023045)+3 种基金Shanxi Province Higher Education Teaching Reform and Innovation Project(Grant No.J20220274)Shanxi Postgraduate Education and Teaching Reform Project Fund(2022YJJG094)Shanxi Agricultural University Doctoral Research Start-up Project(Grant No.2021BQ88)Shanxi Agricultural University Academic Restoration Research Project(2020xshf38).
文摘Effective and accurate action recognition is essential to the intelligent breeding of the Jinnan cattle.However,there are still several challenges in the current Jinnan cattle action recognition.Traditional methods are based on manual characteristics and low recognition accuracy.This study is aimed at the efficient and accurate development of Jinnan cattle action recognition methods to overcome existing problems and support intelligent breeding.The acquired data from the previous methods contain a lot of noise,which will cause individual cattle to have excessive behaviors due to unsuitability.Concerning the high labor costs,low efficiency,and low model accuracy of the above approaches,this study developed a bottleneck attention-enhanced two-stream(BATS)Jinnan cattle action recognition method.It primarily comprises a Spatial Stream Subnetwork,a Temporal Stream Subnetwork,and a Bottleneck Attention Module.It can capture the spatial-channel dependencies in RGB and optical flow two branches respectively,so as to extract richer and more robust features.Finally,the decision of the two branches can be fused to gain improved cattle action recognition performance.Compared with the traditional methods,the model proposed in this study has achieved state-of-the-art recognition performance,and the accuracy of motion recognition was 96.53%,which was 4.60%higher than other models.This method significantly improves the efficiency and accuracy of behavior recognition and provides an important research foundation and direction for the development of higher-level behavior analysis models in the future development of smart animal husbandry.