期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance 被引量:21
1
作者 Y.Jiao L.J.Huang +4 位作者 S.L.Wei H.X.Peng Q.An S.Jiang L.Geng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第8期1532-1542,共11页
The improvement of mechanical properties must be achieved by designing and constructing more suitable microstructure,such as hierarchical microstructure.In order to significantly enhance the creep resistance of titani... The improvement of mechanical properties must be achieved by designing and constructing more suitable microstructure,such as hierarchical microstructure.In order to significantly enhance the creep resistance of titanium matrix composites(TMCs),two-scale network microstructure was constructed including the first-scale network(<150μm)with micro-TiB whisker(TiBw)reinforcement and the second-scale network(<30μm)with nano-Ti5Si3 reinforcement by powder metallurgy and in-situ synthesis.The results showed that the creep rate of the composite was remarkably reduced by an order of magnitude compared with the Ti6Al4V alloy at 550℃,600℃,650℃ under the stresses between 100 MPa and 350 MPa.Moreover,the rupture time of the composite was increased by 20 times,compared with that of the Ti6Al4 Valloy at 550℃/300 MPa.The superior creep resistance could be attributed to the hierarchical microstructure.The micro-TiBw reinforcement in the first-scale network boundary contributed to creep resistance primarily by blocking grain boundary sliding,while the nano-Ti5Si3 particle in the second-scale network boundary mainly by hindering phase boundary sliding.In addition,the nano-Ti5Si3 particle was dissolved,and precipitated with smaller size than the primary Ti5Si3.This phenomenon was attributed to Si element diffusion under high temperature and external stress,which could further continuously enhance the creep resistance.Finally,the creep rate during steady-state stage was significantly decreased,which manifested superior creep resistance of the composite. 展开更多
关键词 Titanium matrix composite two-scale network microstructure Nano-Ti5Si3 Creep Powder METALLURGY
原文传递
Microstructure Evolution and Deformation Mechanism of DZ125 Ni-based Superalloy During High-Temperature Creep
2
作者 Li Yongxiang Tian Ning +3 位作者 Zhang Ping Zhang Shunke Yan Huajin Zhao Guoqi 《稀有金属材料与工程》 北大核心 2025年第7期1733-1740,共8页
The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the init... The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the initial stage of high-temperature creep,two sets of dislocations with different Burgers vectors move and meet inγmatrix channels,and react to form a quadrilateral dislocation network.Andγ′phases with raft-like microstructure are generated after the formation of dislocation networks.As creep progresses,the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks.During steady stage of creep,the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-likeγ′phases.At the later stage of creep,the raft-likeγ′phases are sheared by dislocations at the breakage of dislocation networks,and then alternate slip occurs,which distorts and breaks the raft-likeγ′/γphases,resulting in the accumulation of micropores at the raft-likeγ′/γinterfaces and the formation of microcracks.As creep continues,the microcracks continue to expand until creep fracture occurs,which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature. 展开更多
关键词 DZ125 Ni-based superalloy CREEP dislocation network deformation mechanism microstructure evolution
原文传递
Application of novel physical picture based on artificial neural networks to predict microstructure evolution of Al-Zn-Mg-Cu alloy during solid solution process 被引量:6
3
作者 刘蛟蛟 李红英 +1 位作者 李德望 武岳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期944-953,共10页
The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron ... The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium. 展开更多
关键词 aluminum alloy solution treatment electrical resistivity artificial neural network microstructure evolution
在线阅读 下载PDF
Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures 被引量:3
4
作者 Jianxing Liu Xinyuan Zhu +1 位作者 Zhangming Shen Yihui Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第7期1050-1062,I0001,共14页
Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonli... Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonlinear mechanical properties of human tissues/organs.In practical applications,the soft network materials usually serve as the encapsulation layer and/or substrate of bio-integrated electronic devices,where deterministic holes can be utilized to accommodate hard chips,thereby increasing the filling ratio of the device system.Therefore,it is essential to understand how the hole-type imperfection affects the stretchability of soft network materialswith various geometric constructions.Thiswork presents a systematic investigation of the imperfection sensitivity of mechanical properties in soft network materials consisting of horseshoe microstructures,through combined computational and experimental studies.A factor of imperfection insensitivity of stretchability is introduced to quantify the influence of hole imperfections,as compared to the case of perfect soft network materials.Such factor is shown to have different dependences on the arc angle and normalized width of horseshoe microstructures for triangular network materials.The soft triangular and Kagome network materials,especially with the arc angle in the range of(30?,60?),are found to be much more imperfection insensitive than corresponding traditional lattice materials with straight microstructures.Differently,the soft honeycomb network materials are not as imperfection insensitive as traditional honeycomb lattice materials. 展开更多
关键词 Imperfect network material Imperfection insensitivity microstructure shape Lattice topology Stretchability
原文传递
Microstructure quantification of Cu-4.7Sn alloys prepared by two-phase zone continuous casting and a BP artificial neural network model for microstructure prediction 被引量:2
5
作者 Ji-Hui Luo Xue-Feng Liu +1 位作者 Zhang-Zhi Shi Yi-Fei Liu 《Rare Metals》 SCIE EI CAS CSCD 2019年第12期1124-1130,共7页
Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at l... Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at least one small grain within it,is observed and called as grain-covered grains(GCGs).Distribution of small grains,their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope.Back propagation(BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters.Inputs of the model are five processing parameters,which are temperatures of melt,mold and cooling water,speed of TZCC,and cooling distance.Outputs of the model are nine microstructure quantities,which are numbers of small grains within columnar grains,at the boundaries of the columnar grains,or at the surface of the alloy,the maximum and the minimum numbers of small grains within a columnar grain,numbers of columnar grains with or without small grains,and sizes of small grains and columnar grains.The model yields precise prediction,which lays foundation for controlling microstructures of alloys prepared by TZCC. 展开更多
关键词 Two-phase zone continuous casting Cu-Sn alloy Grains-covered grains microstructure quantification Back propagation artificial neural network
原文传递
Artificial Neural Network Modeling of Microstructure During C-Mn and HSLA Plate Rolling 被引量:1
6
作者 TAN Wen LIU Zhen-yu WU Di WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第2期80-83,共4页
An artificial neural network (ANN) model for predicting transformed mierostrueture in conventional rolling process and therrnomechanical controlled process (TMCP) is proposed. The model uses austenite grain size a... An artificial neural network (ANN) model for predicting transformed mierostrueture in conventional rolling process and therrnomechanical controlled process (TMCP) is proposed. The model uses austenite grain size and retained strain, which can be calculated by using microstructure evolution models, together with a measured cooling rate and chemical compositions as inputs and the ferrite grain size and ferrite fraction as outputs. The predicted re- suits show that the model can predict the transformed microstructure which is in good agreement with the measured one, and it is better than the empirical equations. Also, the effect of the alloying elements on transformed products has been analyzed by using the model. The tendency is the same as that in the reported articles. The model can be used further for the optimization of processing parameters, mierostructure and properties in TMCP. 展开更多
关键词 artificial neural network TMCP microstructure ferrite grain size
原文传递
Study of microstructure evolution of magnesium alloy cylindrical part with longitudinal inner ribs during hot flow forming by coupling ANN-modified CA and FEA
7
作者 Jinchuan Long Gangfeng Xiao +1 位作者 Qinxiang Xia Xinyun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3229-3244,共16页
Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How... Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results. 展开更多
关键词 Magnesium alloy cylindrical part with longitudinal inner ribs Hot flow forming microstructure evolution Artificial neural network Cellular automaton Finite element
在线阅读 下载PDF
Measurement and Characterization of Micro Corner-Cube Reflectors Array Using Coherent Denoising Interference and Physical Model-Based Neural Network
8
作者 Xinlan Tang Lingbao Kong +4 位作者 Zhenzhen Ding Yuhan Wang Bo Wang Huixin Song Yanwen Shen 《Chinese Journal of Mechanical Engineering》 2025年第3期61-76,共16页
In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array... In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array components often encounters challenges due to the reduced scale and complex structures,either by contact or noncontact optical approaches.Among these microstructural arrays,there are still no optical measurement methods for micro corner-cube reflector arrays.To solve this problem,this study introduces a method for effectively eliminating coherent noise and achieving surface profile reconstruction in interference measurements of microstructural arrays.The proposed denoising method allows the calibration and inverse solving of system errors in the frequency domain by employing standard components with known surface types.This enables the effective compensation of the complex amplitude of non-sample coherent light within the interferometer optical path.The proposed surface reconstruction method enables the profile calculation within the situation that there is complex multi-reflection during the propagation of rays in microstructural arrays.Based on the measurement results,two novel metrics are defined to estimate diffraction errors at array junctions and comprehensive errors across multiple array elements,offering insights into other types of microstructure devices.This research not only addresses challenges of the coherent noise and multi-reflection,but also makes a breakthrough for quantitively optical interference measurement of microstructural array devices. 展开更多
关键词 microstructural arrays measurement Optical measurement Coherent denoising Neural network Multi-reflection
暂未订购
Modeling and optimization of aluminum-steel refill friction stir spot welding based on backpropagation neural network
9
作者 Shi-yi Wang Yun-qiang Zhao +3 位作者 Korzhyk Volodymyr Hao-kun Yang Li-kun Li Bei-xian Zhang 《Journal of Iron and Steel Research International》 2025年第7期2104-2115,共12页
Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process... Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process was first established with 6061-T6 aluminum alloy and DP780 galvanized steel as base materials.This dataset was then optimized using a backpropagation neural network.Analyses and mining of the experimental data confirmed the multidimensional mapping relationship between welding parameters and joint strength.Subsequently,intelligent optimization of the welding process and prediction of joint strength were achieved.At the predicted welding parameter(plunging rotation speedω1=1733 r/min,refilling rotation speedω_(2)=1266 r/min,plunging depth p=1.9 mm,and welding speed v=0.5 mm/s),the tensile shear fracture load of the joint reached a maximum value of 10,172 N,while the experimental result was 9980 N,with an error of 1.92%.Furthermore,the correlation of welding parameters-microstructure-joint strength was established. 展开更多
关键词 Refill friction stir spot welding-Neural network Welding parameter optimization microstructure Joint strength
原文传递
Pore network modeling of gas-water two-phase flow in deformed multi-scale fracture-porous media
10
作者 Dai-Gang Wang Yu-Shan Ma +6 位作者 Zhe Hu Tong Wu Ji-Rui Hou Zhen-Chang Jiang Xin-Xuan Qi Kao-Ping Song Fang-zhou Liu 《Petroleum Science》 2025年第5期2096-2108,共13页
Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at ... Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at different stress loading stages are obtained.The U-Net fully convolutional neural network is utilized to achieve fine semantic segmentation of rock skeleton,pore space,and microfractures based on CT slice images of deep rocks.The three-dimensional digital rock models of deformed multiscale fractured-porous media at different stress loading stages are thereafter reconstructed,and the equivalent fracture-pore network models are finally extracted to explore the underlying mechanisms of gas-water two-phase flow at the pore-scale.Results indicate that,in the process of insitu stress loading,both the deep rocks have experienced three stages:linear elastic deformation,nonlinear plastic deformation,and shear failure.The micro-mechanical behavior greatly affects the dynamic deformation of rock microstructure and gas-water two-phase flow.In the linear elastic deformation stage,with the increase in in-situ stress,both the deep rocks are gradually compacted,leading to decreases in average pore radius,pore throat ratio,tortuosity,and water-phase relative permeability,while the coordination number nearly remains unchanged.In the plastic deformation stage,the synergistic influence of rock compaction and existence of micro-fractures typically exert a great effect on pore-throat topological properties and gas-water relative permeability.In the shear failure stage,due to the generation and propagation of micro-fractures inside the deep rock,the topological connectivity becomes better,fluid flow paths increase,and flow conductivity is promoted,thus leading to sharp increases in average pore radius and coordination number,rapid decreases in pore throat ratio and tortuosity,as well as remarkable improvement in relative permeability of gas phase and waterphase. 展开更多
关键词 Ultra-deep reservoir In-situ stress loading U-Netfully convolutional neural network CTscanning microstructure deformation Pore-scalefluid flow
原文传递
Effects of ZnO,FeO and Fe_(2)O_(3)on the spinel formation,microstructure and physicochemical properties of augite-based glass ceramics 被引量:4
11
作者 Shuai Zhang Yanling Zhang Shaowen Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1207-1216,共10页
Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The resu... Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics. 展开更多
关键词 SPINEL network structure thermodynamics microstructure glass ceramics
在线阅读 下载PDF
A fractal-based model for the microstructure evolution of silicon bronze wires fabricated by dieless drawing 被引量:1
12
作者 Zhen Wang Xue-feng Liu +1 位作者 Yong He Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期770-776,共7页
The back-propagation neural (BPN) network was proposed to model the relationship between the parameters of the dieless draw- ing process and the microstrecmres of the QSi3-1 silicon bronze alloy. Combined with image... The back-propagation neural (BPN) network was proposed to model the relationship between the parameters of the dieless draw- ing process and the microstrecmres of the QSi3-1 silicon bronze alloy. Combined with image processing techniques, grain sizes and grain-boundary morphologies were respectively determined by the quantitative metallographic method and the flactal theory. The outcomes obtained show that the deformed microstructures exhibit typical fractal features, and the boundaries can be characterized quantitatively by ffactal dimensions. With the temperature of 600-800℃ and the drawing speed of 0.67-1.00 mm-s-1, either a lower temperature or a higher speed will cause a smaller grain size together with an elevated fractal dimension. The developed model can be capable for forecasting the microstructure evolution with a minimum error. The average relative errors between the predicted results and the experimental values of grain size and fractal dimension are 3.9% and 0.9%, respectively. 展开更多
关键词 silicon bronze dieless drawing microstructure fractal dimension neural networks
在线阅读 下载PDF
Fractal Characteristics and Prediction of Ti-15-3 Alloy Recrystallized Microstructure
13
作者 Ping LI Qing ZHANG Kemin XUE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期835-839,共5页
Grain shape of the hot deforming alloy is an important of material. The fractal theory was applied to analyze index to character the microstructure and performance the recrystallized microstructure of Ti-15-3 alloy af... Grain shape of the hot deforming alloy is an important of material. The fractal theory was applied to analyze index to character the microstructure and performance the recrystallized microstructure of Ti-15-3 alloy after hot deformation and solution treatment. The fractal dimensions of recrystallized grains were calculated by slit island method. The influence of processing parameters on fractal dimension and grain size was studied, It has been shown that the shapes of recrystallized grain boundaries are self-similar, and the fractal dimension varies from 1 to 2. With increasing deformation degree and strain rate or decreasing deformation temperature, the fractal dimension of grain boundaries increased and the grain size decreased. So the fractal dimension could characterize the grain shape and size. A neural network model was trained to predict the fractal dimension of recrystallized microstructure and the result is in excellent agreement with the experimental data. 展开更多
关键词 Ti-15-3 alloy Hot deformation Recrystallized microstructure FRACTAL Neural network
在线阅读 下载PDF
准连续网状增强TiAl基复合材料的设计与研究 被引量:1
14
作者 刘赵婷 李明骜 +2 位作者 肖树龙 陈玉勇 熊意义 《中国有色金属学报》 北大核心 2025年第5期1611-1625,共15页
本文设计并结合低能球磨和放电等离子烧结技术成功制备了一种具有C元素强塑化基体单元的准连续网状增强TiAl基复合材料,并对其微观组织演化和高温力学性能进行了研究。结果表明:材料的烧结组织主要由TiAl基体单元及其界面层的准连续网... 本文设计并结合低能球磨和放电等离子烧结技术成功制备了一种具有C元素强塑化基体单元的准连续网状增强TiAl基复合材料,并对其微观组织演化和高温力学性能进行了研究。结果表明:材料的烧结组织主要由TiAl基体单元及其界面层的准连续网状增强结构组成,基体单元内部为γ相和(α_(2)+γ)层片团构成的双态组织,准连续网状增强结构中增强体主要为针状和颗粒状的TiB、Ti_(2)AlC和Ti_(3)AlC相;随着B_(4)C含量增加,准连续网状增强结构的厚度和连续性增加,基体单元的连通性降低;相同B_(4)C含量条件下,随着Ti Al合金粉末粒径减小,准连续网状增强结构的厚度和连续性减小,基体单元的连通性提高;同时,准连续网状增强结构能够将TiAl基复合材料900℃的高温极限抗拉强度(UTS)和伸长率显著提高至441.0 MPa和2.3%。 展开更多
关键词 TIAL基复合材料 准连续网状增强结构 放电等离子烧结 组织演化 力学性能
在线阅读 下载PDF
基于LSTM网络的声振耦合系统微结构拓扑优化 被引量:1
15
作者 徐炅阳 余秋子 陈海波 《固体力学学报》 北大核心 2025年第4期437-448,共12页
声振耦合系统微结构拓扑优化通常通过响应分析、灵敏度计算与设计变量更新的循环迭代,最终得到收敛的优化结构拓扑构型.此优化过程存在计算成本高、效率低等问题,为此本文提出了一种基于长短期记忆(Long-Short Term Memory,LSTM)神经网... 声振耦合系统微结构拓扑优化通常通过响应分析、灵敏度计算与设计变量更新的循环迭代,最终得到收敛的优化结构拓扑构型.此优化过程存在计算成本高、效率低等问题,为此本文提出了一种基于长短期记忆(Long-Short Term Memory,LSTM)神经网络的声振耦合系统微结构拓扑优化方法.该方法的核心思想是将声振耦合系统微结构拓扑优化过程视作构型连续变化的时序信息,利用LSTM网络强大的时序信息处理能力学习构型演化的规律,最终实现基于LSTM网络的微结构拓扑优化.论文利用基于有限元-边界元法分析的微结构优化方法生成数据集,通过测试不同网络层数、单元数和时间序列输入长度确定数值性能最优的LSTM网络,最终利用LSTM网络实现对常规声振耦合系统微结构拓扑优化的全流程替代.数值算例表明,该方法在保证优化质量的前提下显著降低了计算成本,对于不同激励频率以及不同体积约束的工况均有较好的优化效果,体现了较强的泛化能力. 展开更多
关键词 声振耦合系统 微结构拓扑优化 长短期记忆网络 深度学习
原文传递
漯薯系列甘薯淀粉超微结构及物化特性的解析
16
作者 马晨 张勇跃 +5 位作者 孙健 岳瑞雪 张毅 朱红 张文婷 邓少颖 《食品工业科技》 北大核心 2025年第12期124-134,共11页
为探究漯薯系列甘薯淀粉的特性并充分利用,对其颗粒形态、粒径、有序结构、片层结构、直链淀粉含量、支链淀粉链长分布、分支度、热稳定性、糊化与流变学等进行测定,并运用相关性分析对微观结构与物化特性的关系进行研究。结果表明,七... 为探究漯薯系列甘薯淀粉的特性并充分利用,对其颗粒形态、粒径、有序结构、片层结构、直链淀粉含量、支链淀粉链长分布、分支度、热稳定性、糊化与流变学等进行测定,并运用相关性分析对微观结构与物化特性的关系进行研究。结果表明,七种甘薯淀粉颗粒大小不均,呈现圆球形、类圆球形、椭圆形、半球形,中位直径变化范围是15.01~18.40μm。糊化模式为“从淀粉粒中央脐点处向表面进行糊化”。支链淀粉中以短链为主,f_(a)和f_(b1)链占76.27%~79.22%。漯薯9、漯薯10具有较高的峰值粘度和膨胀势;漯薯11的崩解值最低,G'和G''较大,体系稳定;漯薯12的回生值最小,不易回生;漯薯14具有较好的热稳定性与弹性;漯薯16的直链淀粉含量最高、回生值最大。因此,漯薯9、漯薯10可作为增稠剂,漯薯11适宜做烘焙类食品,漯薯12适宜做冷冻产品,漯薯14可作为果冻原料,漯薯16适宜做粉丝加工。此外,甘薯淀粉精细结构中粒直径、直链和支链分子结构、短程有序度是影响甘薯淀粉热稳定性、糊化及凝胶特性关键特征结构。不同品种甘薯淀粉的微观结构和物化特性存在内在关联,这为甘薯淀粉的加工利用及育种提供理论依据。 展开更多
关键词 甘薯淀粉 超微结构 糊化特性 流变特性 关联网络
在线阅读 下载PDF
基于数据驱动的声振耦合系统微结构拓扑优化方法研究
17
作者 徐炅阳 余秋子 +2 位作者 张佳龙 操小龙 陈海波 《振动与冲击》 北大核心 2025年第8期133-142,共10页
传统声振耦合系统微结构拓扑优化依赖于有限元、边界元等数值方法,存在计算成本高、耗时长的问题。为此,提出一种基于数据驱动的声振耦合系统微结构拓扑优化方法。该方法的核心是以微结构密度分布为特征,以系统响应和灵敏度值为标签构... 传统声振耦合系统微结构拓扑优化依赖于有限元、边界元等数值方法,存在计算成本高、耗时长的问题。为此,提出一种基于数据驱动的声振耦合系统微结构拓扑优化方法。该方法的核心是以微结构密度分布为特征,以系统响应和灵敏度值为标签构建数据集分别训练人工神经网络,建立微结构材料分布与响应及灵敏度之间的非线性映射关系。数值测试表明,所提方法通过神经网络预测的方式替代传统的响应分析和灵敏度计算,在保证计算精度的同时减少计算成本,最终显著提升声振耦合系统微结构拓扑优化计算效率。同时该方法具有较好的泛化能力,可以针对不同的初始结构快速给出收敛的优化构型,这对拓扑优化设计中的全局优化解的搜寻具有重要意义。 展开更多
关键词 声振耦合 拓扑优化 微结构 数据驱动 神经网络
在线阅读 下载PDF
新型Ni-Cr-Fe基高温合金热变形行为研究
18
作者 杜方鑫 赵聪 +1 位作者 刘晋平 刘劲松 《精密成形工程》 北大核心 2025年第9期176-184,共9页
目的 借助Gleeble-3500热模拟试验机进行热压缩实验,研究新型Ni-Cr-Fe基高温合金在变形温度为1 075~1 150℃、应变速率为0.001~1 s-1条件下的流变行为。方法 采用金相显微镜和透射电子显微镜观察合金热变形显微组织。构建了基于应变补偿... 目的 借助Gleeble-3500热模拟试验机进行热压缩实验,研究新型Ni-Cr-Fe基高温合金在变形温度为1 075~1 150℃、应变速率为0.001~1 s-1条件下的流变行为。方法 采用金相显微镜和透射电子显微镜观察合金热变形显微组织。构建了基于应变补偿的Arrhenius模型和BP网络模型。结果 新型Ni-Cr-Fe基高温合金流变应力受热变形参数的影响较为显著,与变形温度呈负相关,并与应变速率呈正相关。由显微组织分析可知,在1 150℃/0.01 s^(-1)变形条件下,合金内部原始晶粒基本被细小的动态再结晶晶粒所取代。在0.1 s^(-1)/1 075℃变形条件下,可以明显观察到大量位错缠结堆积在一起;同时还能观察到由于位错堆积和迁移而形成的位错墙。当应变速率降低至0.01 s^(-1)时,晶粒内部位错密度显著降低且还能观察到动态再结晶晶核。利用2类模型预测了合金流变应力随应变的变化情况,其中BP神经网络模型的相关系数为0.998 5、平均相对误差为1.752 1%,预测精度较基于应变补偿的Arrhenius本构模型更高。结论 建立的BP神经网络模型更加适用于预测新型Ni-Cr-Fe基高温合金的流变应力。 展开更多
关键词 镍基高温合金 热变形 微观组织 本构模型 神经网络
在线阅读 下载PDF
基于神经网络的6063铝型材挤压工艺多目标优化
19
作者 刘鹏程 彭炳锋 +3 位作者 刘寒龙 刘莹雪 孙立科 林高用 《中南大学学报(自然科学版)》 北大核心 2025年第3期881-890,共10页
对1种典型6063铝合金挤压型材金相进行分析。采用有限元数值模拟方法对该型材的挤压过程进行模拟。为了解决6063铝型材横截面组织不均匀问题,提出一种基于数值模拟和神经网络相结合的挤压温度均匀性多目标优化方法。基于GABP神经网络建... 对1种典型6063铝合金挤压型材金相进行分析。采用有限元数值模拟方法对该型材的挤压过程进行模拟。为了解决6063铝型材横截面组织不均匀问题,提出一种基于数值模拟和神经网络相结合的挤压温度均匀性多目标优化方法。基于GABP神经网络建立工艺参数(挤压速度、坯料温度、模具温度和挤压筒温度)和成形质量(型材出口横截面的平均温度T_(av)和温度标准差D_(SDT))的映射关系,基于NSGA-Ⅱ算法和Matlab软件平台,对挤压工艺参数进行优化,获得较佳的工艺参数组合。研究结果表明:铝型材不同区域的晶粒组织存在较明显差异;型材组织的不均匀性主要是挤出模口的型材温度不均匀所致;较佳的工艺参数组合是挤压速度为3.73mm/s、坯料温度为474.1℃、模具预热温度为469.9℃、挤压筒预热温度为456.8℃;与初始挤压工艺方案对比,采用优化的挤压工艺参数时,温度标准差DSDT从5.33℃下降到3.32℃。将这组最优工艺参数进行挤压生产验证,发现不同部位晶粒组织的均匀性大幅度提高。 展开更多
关键词 6063铝型材 组织均匀性 GABP神经网络 NSGA-Ⅱ算法 Qform软件
在线阅读 下载PDF
基于改进深度残差网络的金相组织特征分类方法研究
20
作者 宋月 严文谨 +3 位作者 刘培培 安治国 林亚团 宋召朝 《轧钢》 北大核心 2025年第4期111-118,共8页
金相组织分析是钢铁材料研发过程中一项重要的分析手段,目前主要通过经验丰富的专家进行人工判别,费时且容易受到主观意识的影响。为此,研究了基于残差神经网络结构的金相组织智能分析方法,通过对残差网络模型进行改进,提出了基于迁移... 金相组织分析是钢铁材料研发过程中一项重要的分析手段,目前主要通过经验丰富的专家进行人工判别,费时且容易受到主观意识的影响。为此,研究了基于残差神经网络结构的金相组织智能分析方法,通过对残差网络模型进行改进,提出了基于迁移学习的改进残差网络模型以及基于注意力机制的深度残差收缩网络模型,采用两种不同的卷积神经网络模型在20种钢铁材料微观组织测试集上进行验证,实验结果表明:两种模型的准确率分别达到95.36%和95.79%,泛化能力强,最短平均预测时间仅为1.66 s/张。两种模型在钢铁材料金相组织特征分类方面具有一定的先进性,实现了金相组织类型分类的自动化和智能化。 展开更多
关键词 金相组织分析 残差网络 迁移学习 注意力机制 自动化和智能化
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部