A novel algorithm, the immune genetic algorithm based on multi-agent, isproposed for the path planning of tightly coordinated two-robot manipulators, which constructsmainly immune operators accomplished by three steps...A novel algorithm, the immune genetic algorithm based on multi-agent, isproposed for the path planning of tightly coordinated two-robot manipulators, which constructsmainly immune operators accomplished by three steps: defining strategies and methods of multi-agent,calculating virtual forces acting on an agent, and constructing immune operators and performingimmunization during the evolutionary process. It is illustrated to be able to restrain thedegenerate phenomenon effectively and improve the searching ability with high converging speed.展开更多
Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfor...Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfortunately their inverse kinematics have not yet been resolved.This paper discovers that the unknown kinematic parameters of middle platform are responsible for the unresolvable of inverse kinematics,meanwhile the unknown kinematic parameters of middle platform also have huge coupling relationships.Therefore,to break through this challenges,the huge coupling relationships are decoupled layer by layer,the kinematic parameters of middle platform are solved by combining Sylvester's elimination method,and the inverse displacements of 2(3RPS)and 2(3SPR)S-PMs are obtained subsequently.This paper not only solves the inverse kinematics of classical 2(3RPS)and 2(3SPR)S-PMs,but also reveals the essence of the inverse kinematics of general(3-DOF)+(3-DOF)6-DOF S-PMs and proposes a corresponding solution.展开更多
This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link se...This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.展开更多
Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path...Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility,motivating control-aware trajectory generation.This study presents a novel model predictive control(MPC)framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization.Unlike conventional interpolation techniques such as cubic splines,B-splines,and linear interpolation,which neglect physical constraints and system dynamics,the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while minimizing both tracking error and control effort.A key innovation lies in the use of Pareto front analysis for tuning prediction horizon and sampling time,enabling a systematic balance between accuracy and motion smoothness.Comparative evaluation using simulated experiments demonstrates that the proposed MPC approach achieves a minimum mean absolute error(MAE)of 0.170 and reduces maximum acceleration to 0.0217,compared to 0.0385 in classical linear methods.The maximum deviation error was also reduced by approximately 27.4%relative to MPC configurations without tuned parameters.All experiments were conducted in a simulation environment,with computational times per control cycle consistently remaining below 20 milliseconds,indicating practical feasibility for real-time applications.Thiswork advances the state-of-the-art inMPC-based trajectory planning by offering a scalable and interpretable control architecture that meets physical constraints while optimizing motion efficiency,thus making it suitable for deployment in safety-critical robotic applications.展开更多
Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that t...Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators.展开更多
In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative o...In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.展开更多
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi...This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.展开更多
Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist mo...Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s...The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint...A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.展开更多
Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model a...Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.展开更多
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron...Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.展开更多
Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of curr...Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.展开更多
OBJECTIVE To investigate the intervention effects of tissue-bone homeostasis manipulation(TBHM)on peripatellar biomechanical parameters and knee joint function in knee osteoarthritis(KOA)patients.METHODS Sixty patient...OBJECTIVE To investigate the intervention effects of tissue-bone homeostasis manipulation(TBHM)on peripatellar biomechanical parameters and knee joint function in knee osteoarthritis(KOA)patients.METHODS Sixty patients with KOA(Kellgren-Lawrence gradeⅡ-Ⅲ)were recruited from the Acupuncture-Moxibustion Rehabilitation Department,Anhui University of Chinese Medicine between October 2024 and May 2025.Participants were randomized into a TBHM group(n=30)or a transcutaneous electrical neuromuscular stimulation(TENS)group(n=30).Using two-way repeated measures ANOVA,biomechanical indicators,including rectus femoris tension,vastus medialis tension,vastus lateralis tension,patellar ligament tension,lateral patellar displacement(LPD),medial patellar displacement(MPD),normalized patellar mobility(LPD/patellar width[PW],MPD/PW),knee flexion range of motion,and functional indicators,including KOOS subscales,time up and go test(TUGT),were compared between groups at baseline and after 6 weeks of intervention.RESULTS After intervention,all biomechanical and knee joint function indicators in the TBHM group were significantly improved(P<0.05,P<0.01),while only the vastus medialis tension,TUGT and KOOS Pain,ADL and QoL scores in the control group were significantly improved(P<0.01).The improvement amplitudes of biomechanical indicators in the TBHM group,including rectus femoris tension,vastus lateralis tension,patellar ligament tension,MPD/PW,LPD/PW and knee flexion range of motion were better than those in the control group(P<0.05,P<0.01).In the functional evaluation,the interaction effects of the TBHM group in all dimensions of the KOOS score and TUGT were statistically significant(P<0.05,P<0.01).Post-hoc simple effect analysis confirmed that there were significant differences in the above indicators between the two groups after intervention(P<0.05),and all indicators showed a significant main effect of time(P<0.01),suggesting that the intervention measures had continuous and cumulative curative effects.CONCLUSION TBHM effectively improves joint function and quality of life in KOA patients by restoring dynamic equilibrium in soft tissue tension and patellar mobility,ultimately achieving the therapeutic goal of concurrent tissue-bone management.展开更多
OBJECTIVE:In recent years,the number of clinical research reports on acupuncture and manipulation for the treatment of greater occipital neuralgia has gradually increased,but the quality is uneven.There is currently n...OBJECTIVE:In recent years,the number of clinical research reports on acupuncture and manipulation for the treatment of greater occipital neuralgia has gradually increased,but the quality is uneven.There is currently no literature evaluating the quality of published reports,which is not conducive to the promotion of clinical use of these therapies.Therefore,this article assessed the reporting quality of randomized controlled trials on acupuncture and manipulation for greater occipital neuralgia.METHODS:Cochrane Library,PubMed,Web of Science,Embase,China National Knowledge Infrastructure(CNKI),VIP,WanFang Data,and Chinese BioMedical Literature Database(CBM)from inception to May 20,2024 were searched.The reporting quality of included randomized controlled trials was independently evaluated by two investigators using the CONSORT statement,STRICTA checklist,and Cochrane bias of risk assessment tool.A third investigator resolved any disagreement.RESULTS:A total of 62 articles were included.Based on the CONSORT statement,59.46%(22/37)of all entries had a reporting rate of less than 50%,mainly including“Identification as a randomized trial in the title(1/62,1.61%),”“How sample size was determined(7/62,11.29%),”“Implementation(1/62,1.61%),”“Blinding(1/62,1.61%),”and“Reports of Funding(4/62,6.45%).”According to the STRICTA checklist,29.41%(5/17)of all entries had a reporting rate of less than 50%,mainly including“Details of other interventions(7/58,12.07%),”“Setting and context of treatment(0/58,0%),”and“Description of participating acupuncturists(0/58,0%).”CONCLUSION:The reporting quality of randomized controlled trials on acupuncture and manipulation therapy for greater occipital neuralgia remains low.Future researchers need to make greater efforts to strictly adhere to the CONSORT statement and STRICTA checklist during trial design,implementation,and reporting.This will facilitate the standardization of research in this field and enhance the reliability and reproducibility of the research results.展开更多
The existing research on rescue robots has focused mainly on reconnaissance,detection,and firefighting,and a small number of robots that can achieve human rescue have problems such as poor safety and stability and ins...The existing research on rescue robots has focused mainly on reconnaissance,detection,and firefighting,and a small number of robots that can achieve human rescue have problems such as poor safety and stability and insufficient carrying capacity.This article addresses the above issues and cleverly combines the advantages of soft robotic arms,underactuated robotic arms,and suction cups based on the principles of bionics.A new design for a robotic arm was proposed,and its working principle was explained.Then,the human rescue process was divided into two stages,and the grasping force of the robotic arm in each stage was analyzed separately.Finally,a prototype of the principle was developed,and the feasibility of the design principle of the robotic arm was verified through grasping experiments on a cross-sectional contour model of the human chest.At the same time,grasping experiments were conducted on different objects to demonstrate the potential application of the robotic arm in grasping ground objects.This research proposes a stress envelope adsorption rescue robot arm inspired by the adhesion ability of the Drosera plant and the stress envelope effect,which can apply force to the entire surface of the human body,reduce local force on the human body,ensure load-bearing capacity and adaptability,and improve the safety and stability of rescue grasping.展开更多
Electrotaxis,a method that utilizes an electric field to direct the motion of particles or droplets,typically involves a droplet on a flat surface being guided by an electrically charged tweezer above it.Traditional e...Electrotaxis,a method that utilizes an electric field to direct the motion of particles or droplets,typically involves a droplet on a flat surface being guided by an electrically charged tweezer above it.Traditional electrotaxis methods have relied on voltages over 1.5 kV for droplet control,but this has several disadvantages,such as high voltage demands,the danger of electric discharge to the droplet,possible adhesion of the droplet to the tweezer,and issues with droplet oscillation and overshoot,which impede its broader application.The present study proposes an innovative tweezer design that not only operates at reduced voltages but also reduces droplet oscillation relative to traditional tweezers.This tweezer features a coaxial tubular sheath encircling the electrode,which modifies the electric field’s influence on the droplet.Numerical simulations were employed to obtain the tweezer’s ideal dimensions and shape.The empirical evidence indicates that the new tweezer can adeptly steer droplets at a markedly lower voltage of 620 V,ensuring a more stable trajectory and significantly diminishing overshoot.The tweezer’s distinctive design also decreases the possibility of electric discharge to the droplet,thus improving the safety of the system for managing delicate droplets.In the experiment,the maximum droplet translation speed attained was 105 mm/s at an applied voltage of 1.2 kV.This represents a 29.6%increase in speed and a 70%decrease in the required voltage compared to the previously highest reported droplet speed.展开更多
The original intention of the algorithmic recommender system is to grapple with the negative impacts caused by information overload,but the system also can be used as"hypernudge",a new form of online manipul...The original intention of the algorithmic recommender system is to grapple with the negative impacts caused by information overload,but the system also can be used as"hypernudge",a new form of online manipulation,to inten⁃tionally exploit people's cognitive and decision-making gaps to influence their decisions in practice,which is particu⁃larly detrimental to the sustainable development of the digital market.Limiting harmful algorithmic online manipula⁃tion in digital markets has become a challenging task.Globally,both the EU and China have responded to this issue,and the differences between them are so evident that their governance measures can serve as the typical case.The EU focuses on improving citizens'digital literacy and their ability to integrate into digital social life to independently ad⁃dress this issue,and expects to address harmful manipulation behavior through binding and applicable hard law,which is part of the digital strategy.By comparison,although there exist certain legal norms that have made relevant stipula⁃tions on manipulation issues,China continues to issue specific departmental regulations to regulate algorithmic recom⁃mender services,and pays more attention to addressing collective harm caused by algorithmic online manipulation through a multiple co-governance approach led by the government or industry associations to implement supervision.展开更多
文摘A novel algorithm, the immune genetic algorithm based on multi-agent, isproposed for the path planning of tightly coordinated two-robot manipulators, which constructsmainly immune operators accomplished by three steps: defining strategies and methods of multi-agent,calculating virtual forces acting on an agent, and constructing immune operators and performingimmunization during the evolutionary process. It is illustrated to be able to restrain thedegenerate phenomenon effectively and improve the searching ability with high converging speed.
基金Supported by National Natural Science Foundation of China(Grant No.52275033)National Natural Science Youth Foundation of China(Grant No.52205033)Hebei Provincial Natural Science Foundation of China(Grant No.E2021203019)。
文摘Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfortunately their inverse kinematics have not yet been resolved.This paper discovers that the unknown kinematic parameters of middle platform are responsible for the unresolvable of inverse kinematics,meanwhile the unknown kinematic parameters of middle platform also have huge coupling relationships.Therefore,to break through this challenges,the huge coupling relationships are decoupled layer by layer,the kinematic parameters of middle platform are solved by combining Sylvester's elimination method,and the inverse displacements of 2(3RPS)and 2(3SPR)S-PMs are obtained subsequently.This paper not only solves the inverse kinematics of classical 2(3RPS)and 2(3SPR)S-PMs,but also reveals the essence of the inverse kinematics of general(3-DOF)+(3-DOF)6-DOF S-PMs and proposes a corresponding solution.
基金supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.
基金funded by the research project“BR24992947—Development of Robots,Scientific,Technical,and Software for Flexible Robotization and Industrial Automation(RPA)in Automotive Industrial Enterprises in Kazakhstan Using Artificial Intelligence”.
文摘Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility,motivating control-aware trajectory generation.This study presents a novel model predictive control(MPC)framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization.Unlike conventional interpolation techniques such as cubic splines,B-splines,and linear interpolation,which neglect physical constraints and system dynamics,the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while minimizing both tracking error and control effort.A key innovation lies in the use of Pareto front analysis for tuning prediction horizon and sampling time,enabling a systematic balance between accuracy and motion smoothness.Comparative evaluation using simulated experiments demonstrates that the proposed MPC approach achieves a minimum mean absolute error(MAE)of 0.170 and reduces maximum acceleration to 0.0217,compared to 0.0385 in classical linear methods.The maximum deviation error was also reduced by approximately 27.4%relative to MPC configurations without tuned parameters.All experiments were conducted in a simulation environment,with computational times per control cycle consistently remaining below 20 milliseconds,indicating practical feasibility for real-time applications.Thiswork advances the state-of-the-art inMPC-based trajectory planning by offering a scalable and interpretable control architecture that meets physical constraints while optimizing motion efficiency,thus making it suitable for deployment in safety-critical robotic applications.
基金Supported by National Natural Science Foundation of China(Grant No.52375502)EU H2020 MSCA R&I Programme(Grant No.101022696).
文摘Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators.
基金supported in part by the Advanced Equipment Manufacturing Technology Innovation Project of Hebei Province under Grant No.22311801D,23311807D,and 236Z1816Gin part by the National Natural Science Foundation of China under Grant No.U20A20283.
文摘In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.
基金supported by the Artificial Intelligence Innovation and Development Special Fund of Shanghai(No.2019RGZN01041)the National Natural Science Foundation of China(No.92048205).
文摘This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.
基金support by “R&D Program for Forest Science Technology(RS-2024-0040 3460)” provided by Korea Forest Service(Korea Forestry Promotion Institute)
文摘Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金Supported by National Natural Science Foundation of China (Grant No.52275036)Key Research and Development Project of the Jiaxing Science and Technology Bureau (Grant No.2022BZ10004)。
文摘The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金Project supported by the National Natural Science Foundation of China(Nos.62273245 and 62173033)the Sichuan Science and Technology Program of China(No.2024NSFSC1486)the Opening Project of Robotic Satellite Key Laboratory of Sichuan Province of China。
文摘A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.
文摘Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.
文摘Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.
文摘Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.
文摘OBJECTIVE To investigate the intervention effects of tissue-bone homeostasis manipulation(TBHM)on peripatellar biomechanical parameters and knee joint function in knee osteoarthritis(KOA)patients.METHODS Sixty patients with KOA(Kellgren-Lawrence gradeⅡ-Ⅲ)were recruited from the Acupuncture-Moxibustion Rehabilitation Department,Anhui University of Chinese Medicine between October 2024 and May 2025.Participants were randomized into a TBHM group(n=30)or a transcutaneous electrical neuromuscular stimulation(TENS)group(n=30).Using two-way repeated measures ANOVA,biomechanical indicators,including rectus femoris tension,vastus medialis tension,vastus lateralis tension,patellar ligament tension,lateral patellar displacement(LPD),medial patellar displacement(MPD),normalized patellar mobility(LPD/patellar width[PW],MPD/PW),knee flexion range of motion,and functional indicators,including KOOS subscales,time up and go test(TUGT),were compared between groups at baseline and after 6 weeks of intervention.RESULTS After intervention,all biomechanical and knee joint function indicators in the TBHM group were significantly improved(P<0.05,P<0.01),while only the vastus medialis tension,TUGT and KOOS Pain,ADL and QoL scores in the control group were significantly improved(P<0.01).The improvement amplitudes of biomechanical indicators in the TBHM group,including rectus femoris tension,vastus lateralis tension,patellar ligament tension,MPD/PW,LPD/PW and knee flexion range of motion were better than those in the control group(P<0.05,P<0.01).In the functional evaluation,the interaction effects of the TBHM group in all dimensions of the KOOS score and TUGT were statistically significant(P<0.05,P<0.01).Post-hoc simple effect analysis confirmed that there were significant differences in the above indicators between the two groups after intervention(P<0.05),and all indicators showed a significant main effect of time(P<0.01),suggesting that the intervention measures had continuous and cumulative curative effects.CONCLUSION TBHM effectively improves joint function and quality of life in KOA patients by restoring dynamic equilibrium in soft tissue tension and patellar mobility,ultimately achieving the therapeutic goal of concurrent tissue-bone management.
文摘OBJECTIVE:In recent years,the number of clinical research reports on acupuncture and manipulation for the treatment of greater occipital neuralgia has gradually increased,but the quality is uneven.There is currently no literature evaluating the quality of published reports,which is not conducive to the promotion of clinical use of these therapies.Therefore,this article assessed the reporting quality of randomized controlled trials on acupuncture and manipulation for greater occipital neuralgia.METHODS:Cochrane Library,PubMed,Web of Science,Embase,China National Knowledge Infrastructure(CNKI),VIP,WanFang Data,and Chinese BioMedical Literature Database(CBM)from inception to May 20,2024 were searched.The reporting quality of included randomized controlled trials was independently evaluated by two investigators using the CONSORT statement,STRICTA checklist,and Cochrane bias of risk assessment tool.A third investigator resolved any disagreement.RESULTS:A total of 62 articles were included.Based on the CONSORT statement,59.46%(22/37)of all entries had a reporting rate of less than 50%,mainly including“Identification as a randomized trial in the title(1/62,1.61%),”“How sample size was determined(7/62,11.29%),”“Implementation(1/62,1.61%),”“Blinding(1/62,1.61%),”and“Reports of Funding(4/62,6.45%).”According to the STRICTA checklist,29.41%(5/17)of all entries had a reporting rate of less than 50%,mainly including“Details of other interventions(7/58,12.07%),”“Setting and context of treatment(0/58,0%),”and“Description of participating acupuncturists(0/58,0%).”CONCLUSION:The reporting quality of randomized controlled trials on acupuncture and manipulation therapy for greater occipital neuralgia remains low.Future researchers need to make greater efforts to strictly adhere to the CONSORT statement and STRICTA checklist during trial design,implementation,and reporting.This will facilitate the standardization of research in this field and enhance the reliability and reproducibility of the research results.
基金Supported by National Natural Science Foundation of China(Grant No.52475032)Central Government Guides Local Science and Technology Development Fund Projects(Grant No.246Z2001G)Hebei Provincial Natural Science Foundation Key Projects(Grant No.E2021203125).
文摘The existing research on rescue robots has focused mainly on reconnaissance,detection,and firefighting,and a small number of robots that can achieve human rescue have problems such as poor safety and stability and insufficient carrying capacity.This article addresses the above issues and cleverly combines the advantages of soft robotic arms,underactuated robotic arms,and suction cups based on the principles of bionics.A new design for a robotic arm was proposed,and its working principle was explained.Then,the human rescue process was divided into two stages,and the grasping force of the robotic arm in each stage was analyzed separately.Finally,a prototype of the principle was developed,and the feasibility of the design principle of the robotic arm was verified through grasping experiments on a cross-sectional contour model of the human chest.At the same time,grasping experiments were conducted on different objects to demonstrate the potential application of the robotic arm in grasping ground objects.This research proposes a stress envelope adsorption rescue robot arm inspired by the adhesion ability of the Drosera plant and the stress envelope effect,which can apply force to the entire surface of the human body,reduce local force on the human body,ensure load-bearing capacity and adaptability,and improve the safety and stability of rescue grasping.
文摘Electrotaxis,a method that utilizes an electric field to direct the motion of particles or droplets,typically involves a droplet on a flat surface being guided by an electrically charged tweezer above it.Traditional electrotaxis methods have relied on voltages over 1.5 kV for droplet control,but this has several disadvantages,such as high voltage demands,the danger of electric discharge to the droplet,possible adhesion of the droplet to the tweezer,and issues with droplet oscillation and overshoot,which impede its broader application.The present study proposes an innovative tweezer design that not only operates at reduced voltages but also reduces droplet oscillation relative to traditional tweezers.This tweezer features a coaxial tubular sheath encircling the electrode,which modifies the electric field’s influence on the droplet.Numerical simulations were employed to obtain the tweezer’s ideal dimensions and shape.The empirical evidence indicates that the new tweezer can adeptly steer droplets at a markedly lower voltage of 620 V,ensuring a more stable trajectory and significantly diminishing overshoot.The tweezer’s distinctive design also decreases the possibility of electric discharge to the droplet,thus improving the safety of the system for managing delicate droplets.In the experiment,the maximum droplet translation speed attained was 105 mm/s at an applied voltage of 1.2 kV.This represents a 29.6%increase in speed and a 70%decrease in the required voltage compared to the previously highest reported droplet speed.
文摘The original intention of the algorithmic recommender system is to grapple with the negative impacts caused by information overload,but the system also can be used as"hypernudge",a new form of online manipulation,to inten⁃tionally exploit people's cognitive and decision-making gaps to influence their decisions in practice,which is particu⁃larly detrimental to the sustainable development of the digital market.Limiting harmful algorithmic online manipula⁃tion in digital markets has become a challenging task.Globally,both the EU and China have responded to this issue,and the differences between them are so evident that their governance measures can serve as the typical case.The EU focuses on improving citizens'digital literacy and their ability to integrate into digital social life to independently ad⁃dress this issue,and expects to address harmful manipulation behavior through binding and applicable hard law,which is part of the digital strategy.By comparison,although there exist certain legal norms that have made relevant stipula⁃tions on manipulation issues,China continues to issue specific departmental regulations to regulate algorithmic recom⁃mender services,and pays more attention to addressing collective harm caused by algorithmic online manipulation through a multiple co-governance approach led by the government or industry associations to implement supervision.