In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by ...In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes (RANS) model and a large-eddy simulation (LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups (30μm, 50μm, and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles. From the measurements, theoretical analysis, and simulation, it is found that the two-phase velocity correlation of sudden-expansion flows, like that of jet flows, is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements, theoretical analysis, and numerical simulation all lead to the above-stated conclusions. Quantitatively, the results of the LES are better than those of the RANS model.展开更多
基金supported by the National Natural Science Foundation of China (50606026 and 50736006)
文摘In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes (RANS) model and a large-eddy simulation (LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups (30μm, 50μm, and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles. From the measurements, theoretical analysis, and simulation, it is found that the two-phase velocity correlation of sudden-expansion flows, like that of jet flows, is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements, theoretical analysis, and numerical simulation all lead to the above-stated conclusions. Quantitatively, the results of the LES are better than those of the RANS model.