Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate...Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.展开更多
Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at l...Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at least one small grain within it,is observed and called as grain-covered grains(GCGs).Distribution of small grains,their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope.Back propagation(BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters.Inputs of the model are five processing parameters,which are temperatures of melt,mold and cooling water,speed of TZCC,and cooling distance.Outputs of the model are nine microstructure quantities,which are numbers of small grains within columnar grains,at the boundaries of the columnar grains,or at the surface of the alloy,the maximum and the minimum numbers of small grains within a columnar grain,numbers of columnar grains with or without small grains,and sizes of small grains and columnar grains.The model yields precise prediction,which lays foundation for controlling microstructures of alloys prepared by TZCC.展开更多
The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at ca...The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.展开更多
The expression of the solute distribution in columnar crystal zone was deduced when the solid-liquid interface bended periodically, and the quantitative calculations of macrosegregation were also made in the process o...The expression of the solute distribution in columnar crystal zone was deduced when the solid-liquid interface bended periodically, and the quantitative calculations of macrosegregation were also made in the process of the continuous casting. The solute distribution along the thickness direction of the slabs was obtained, which verified the theoretical calculation. The effect of the bulge size, solidification speed, and solidification shrinkage speed on macrosegregation of the slabs was calculated. It can be concluded that normal segregation and negative segregation alternatively appear as a result of the bulge. The normal segregation exponentially depends on the bulge size, and the negative segregation linearly depends on the bulge size. The extent of the normal segregation is greater than that of the negative segregation when the bulge size is the same. The macrosegregation of the same position along the thickness direction of the slabs changes in a sine wave with increasing the solidification rate, and the amplitude is larger at the casting blank center. The normal segregation linearly decreases with increasing the solidification shrinkage speed, and when the solidification shrinkage speed exceeds a critical value, the segregation appears negatively and increases linearly.展开更多
The segregation of solute elements at solidification front could be greatly improved by application of electromagnetic stirring(SEM)in secondary cooling zone.The location of SEM in secondary cooling zone affects the o...The segregation of solute elements at solidification front could be greatly improved by application of electromagnetic stirring(SEM)in secondary cooling zone.The location of SEM in secondary cooling zone affects the operational effect.In the present study,based on the application of SEM in Ultra-thick slab continuous casting,the shell thickness was calculated by self-programming code and the results were verified by nail-shooting test.A numerical model was established to calculate the fluid flow of molten steel under shell to determine the suitable SEM location in secondary cooling zone.The results shows that the velocity of molten steel increases with increase of stirring current which enhance the circulatory flow of unset steel at solidification front.Whereas,in order to fully develop ability of SEM it is necessary to select suitable stirring current and mode for ultra-thick slab casting.This calculation provides theoretical base for application of SEM in secondary cooling zone during ultra-thick slab casting process.展开更多
The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimi...The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimize superheat in continuous casting process. Several GCrl5 billets were collected from the continuous casting shop, and the same CEGZ was chosen for comparison of internal quality of GCrl5 billets. Considering the limitation of segregation index at some points, two- dimensional segregation ratio in CEGZ was introduced. Firstly, the segregation ratio and the area of center large dark points in CEGZ obtain the minimum at 25 ℃ superheat, which indicates that the quality of CEGZ at 25 ~C superheat is improved compared with those at 20 and 35 ℃ superheats for corresponding continuously cast billets. The highest superheat and the lowest superheat are not beneficial for improving the central zone quality in the billets. Secondly, the quality of CEGZ of GCr15 billets increases with a decrease in the secondary dendrite arm spacing of CEGZ. Finally, according to the established finite element model, it is deduced that the secondary dendrite arm spacing of CEGZ is closely related to its later solidifica- tion time at solid fraction of 0.5-1.0, and the former will be decreased when decreasing the latter.展开更多
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures...The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.展开更多
By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The tes...By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The test results indicate that there are three temperature regions of brittleness for HRB335C billet in the temperature range from 700 ℃ to solidification point; the first temperature region of brittleness is 1 300 ℃ to solidification point of the billet, the second temperature region of brittleness is 1 200-- 1 000 ℃, and the third temperature region of brittleness is 700-850 ℃ ; the steel is plastic at 850--1 000 ℃. The cracking sensitivity was studied in the different temperature zones of the brittleness for steel HRB335C and the target surface temperature curve for the secondary cooling is determined. With optimized process, the mathematical model of the steady temperature field with two-dimensional heat transfer for 150 mm×150 mm HRB335C steel billet was established to optimize the secondary cooling process. The conic relation of water distribution between secondary cooling water flux and casting speed is regressed. Keeping the surface temperature of billet before the straightening point above 1 000 ℃, the results of billet test indicate that there is free central shrinkage cavity. The billet defect is decreased greatly, and the quality of billet is obviously improved.展开更多
An Eulerian-Eulerian two-fluid model was developed to study the vortex flow inside a slab continuous casting mold with argon gas injection. Interracial momentum transfer that accommodated various interracial forces in...An Eulerian-Eulerian two-fluid model was developed to study the vortex flow inside a slab continuous casting mold with argon gas injection. Interracial momentum transfer that accommodated various interracial forces including drag force, lift force, virtual mass force, and turbulent dispersion force was considered. Predicted results agree well vaith experimental measurements of the water model in two-phase flow pattern and vortex flow structures. Three typical flow patterns with different argon steel ratios (ASRs) have been obtained: "double roll", "three roll", and "single roll". The flow pattern inside the mold alternates among the three types or it may attain some intermedi ate condition. With increasing ASR, the positions of vortices move from the submerged entry nozzle to the narrow face of the mold, and the sizes of vortices are reduced gradually. The rotating directions of vortices are all from high velocity area to low velocity area. Two mechanisms of vortex formation on the top surface have been suggested, i. e. , congruous shear flow and incongruous shear flow.展开更多
By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the diffe...By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the different temperatures and strain rates. The Precipitations of AIN at different temperatures and the fractures of high-temperature tensile samples were observed by using TEM (transmission electron microscope) and SEM (scanning electron microscope). The factors affecting the brittle temperature zone were discussed.展开更多
The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute ...The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute distribution in the columnar crystal zone was deduced, and the quantitative calculation was also made. The results show that the bulge and the interdendritic spacing are responsible for the flow speed of interdendritic melt. At the initial stage of solidification the bulge operates, and at the final stage the interdendritic spacing operates. The experimental results of macrosegregation in the slabs validated the calculated results of the flow speed of interdendritic melt, which shows that the calculated results are basically consistent with the experimental ones.展开更多
Model experiments with low melting point liquid metals are an important tool to investigate the flow structure and related transport processes in melt flows relevant for metallurgical applications.We present the new e...Model experiments with low melting point liquid metals are an important tool to investigate the flow structure and related transport processes in melt flows relevant for metallurgical applications.We present the new experimental facility LIMMCAST for modelling the continuous casting process of steel using the alloy SnBi at temperatures of 200-400℃.The parameters of the facility and the dimensions of the test sections will be given,and the possibilities for flow investigations in tundish,submerged entry nozzle and mould will be discussed.In addition,the smaller set-up Mini-LIMMCAST will be presented,which works with the room-temperature liquid alloy GaInSn.The main value of cold metal laboratory experiments consists in the capabilities to obtain quantitative flow measurements with a reasonable spatial and temporal resolution.New ultrasonic and electromagnetic techniques for measuring the velocity in liquid metal flows came up during the last decade allowing for a satisfying characterisation of flow quantities in the considered temperature range up to 400℃.First results from LIMMCAST and Mini-LIMMCAST will be presented covering the following phenomena:fully contacfless electromagnetic tomography of the flow in the mould,flow monitoring by a multitude of ultrasonic sensors,and analysis of the flow in the mould under the influence of an electromagnetic brake: intensification of the flow turbulence contrary to the expected flow damping,injection of argon bubbles through the stopper rod:occurrence of pressure oscillations.展开更多
In view of fine cracks occurred on the surface of BNbRE continuous casting slabs for heavy rail in the practical production, the effect of two factors, i.e. deformation temperature, deformation velocity, on thermo pla...In view of fine cracks occurred on the surface of BNbRE continuous casting slabs for heavy rail in the practical production, the effect of two factors, i.e. deformation temperature, deformation velocity, on thermo plasticity of BNbRE steel at the third brittle zone was quantitatively investigated on GLEEBLE-1500D thermal-mechanical simulator after measuring the RA-T curve of BNbRE steel. The results provide experimental data for optimizing the technology of continuous casting secondary cooling zone and avoiding the occurrence of fine surface cracks.展开更多
To simulate the phenomena in the mold region of continuous casting by coupling fluid flow and solidification, a three-dimensional mathematical model has been developed based on the K-ε turbulence equations and the SI...To simulate the phenomena in the mold region of continuous casting by coupling fluid flow and solidification, a three-dimensional mathematical model has been developed based on the K-ε turbulence equations and the SIMPLER algorithm. A pseudo source term was introduced into the energy equation to account for the latent heat and kinetic energy. The fluid flow in the mushy zone was calculated by defining the fluid viscosity as a function of the solid fraction in the mushy zone. Fine meshes in the solid region improve convergence and reduce iteration time. Comparison of the fluid flow and temperature distribution with and without solidification shows that although the solid shell in the mold is thin, it still greatly affects the flow pattern. The numerical results obtained provide details of the fluid flow and solidification phenomena which can be used to optimize the nozzle structure and other process parameters in continuous casting.展开更多
The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to th...The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to the broadening of slab. It is concluded that the slab exposes to no constraint at the direction of narrow face. Because of the static pressure of molten steel, the slab deforms creepily in the direction that consequently results in the broadening of slab. The broadening of slab increases with casting speed and static pressure of molten steel. The decrease of secondary cooling intensity and strength of steel at high temperature also contribute to the broadening of slab. The micro-alloying plays an important role in improving the strength of steel and in reducing the broadening of slab.展开更多
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord...In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.展开更多
基金Project(51374025) supported by the National Natural Science Foundation of ChinaProject(2014Z-05) supported by the State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,ChinaProject(2152020) supported by the Beijing Natural Science Foundation,China
文摘Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.
基金financially supported by the National Key Research and Development Plan of China (No.2016YFB0301300)the National Natural Science Foundation of China (Nos.51374025,51674027 and U1703131)the Beijing Municipal Natural Science Foundation (No.2152020)
文摘Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at least one small grain within it,is observed and called as grain-covered grains(GCGs).Distribution of small grains,their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope.Back propagation(BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters.Inputs of the model are five processing parameters,which are temperatures of melt,mold and cooling water,speed of TZCC,and cooling distance.Outputs of the model are nine microstructure quantities,which are numbers of small grains within columnar grains,at the boundaries of the columnar grains,or at the surface of the alloy,the maximum and the minimum numbers of small grains within a columnar grain,numbers of columnar grains with or without small grains,and sizes of small grains and columnar grains.The model yields precise prediction,which lays foundation for controlling microstructures of alloys prepared by TZCC.
基金the National Natural Science Foundation of China(No.U1703131,No.51674027,No.51974027 and No.52004028)Guangdong Basic and Applied Basic Research Foundation(2019A1515111126)the Fundamental Research Funds for the Central Universities(FRF-TP-18-005C1 and FRF-TP-18-041A1).
文摘The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.
基金Item Sponsored by National Natural Science Foundation of China (50374043)
文摘The expression of the solute distribution in columnar crystal zone was deduced when the solid-liquid interface bended periodically, and the quantitative calculations of macrosegregation were also made in the process of the continuous casting. The solute distribution along the thickness direction of the slabs was obtained, which verified the theoretical calculation. The effect of the bulge size, solidification speed, and solidification shrinkage speed on macrosegregation of the slabs was calculated. It can be concluded that normal segregation and negative segregation alternatively appear as a result of the bulge. The normal segregation exponentially depends on the bulge size, and the negative segregation linearly depends on the bulge size. The extent of the normal segregation is greater than that of the negative segregation when the bulge size is the same. The macrosegregation of the same position along the thickness direction of the slabs changes in a sine wave with increasing the solidification rate, and the amplitude is larger at the casting blank center. The normal segregation linearly decreases with increasing the solidification shrinkage speed, and when the solidification shrinkage speed exceeds a critical value, the segregation appears negatively and increases linearly.
文摘The segregation of solute elements at solidification front could be greatly improved by application of electromagnetic stirring(SEM)in secondary cooling zone.The location of SEM in secondary cooling zone affects the operational effect.In the present study,based on the application of SEM in Ultra-thick slab continuous casting,the shell thickness was calculated by self-programming code and the results were verified by nail-shooting test.A numerical model was established to calculate the fluid flow of molten steel under shell to determine the suitable SEM location in secondary cooling zone.The results shows that the velocity of molten steel increases with increase of stirring current which enhance the circulatory flow of unset steel at solidification front.Whereas,in order to fully develop ability of SEM it is necessary to select suitable stirring current and mode for ultra-thick slab casting.This calculation provides theoretical base for application of SEM in secondary cooling zone during ultra-thick slab casting process.
基金The authors are very grateful for National Natu- ral Science Foundation of China (No. 51504047) and Fundamental Research Funds for the Central Universities (No. CDJPY 14130001 ). Meanwhile, the authors acknowledge very valuable discussion with Prof. Guang-hua Wen and Prof. Ping Tang from Chongqing University.
文摘The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimize superheat in continuous casting process. Several GCrl5 billets were collected from the continuous casting shop, and the same CEGZ was chosen for comparison of internal quality of GCrl5 billets. Considering the limitation of segregation index at some points, two- dimensional segregation ratio in CEGZ was introduced. Firstly, the segregation ratio and the area of center large dark points in CEGZ obtain the minimum at 25 ℃ superheat, which indicates that the quality of CEGZ at 25 ~C superheat is improved compared with those at 20 and 35 ℃ superheats for corresponding continuously cast billets. The highest superheat and the lowest superheat are not beneficial for improving the central zone quality in the billets. Secondly, the quality of CEGZ of GCr15 billets increases with a decrease in the secondary dendrite arm spacing of CEGZ. Finally, according to the established finite element model, it is deduced that the secondary dendrite arm spacing of CEGZ is closely related to its later solidifica- tion time at solid fraction of 0.5-1.0, and the former will be decreased when decreasing the latter.
文摘The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.
基金Item Sponsored by Hi-Teeh Research and Development Program of China (863 Program) (2006AA040807)
文摘By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The test results indicate that there are three temperature regions of brittleness for HRB335C billet in the temperature range from 700 ℃ to solidification point; the first temperature region of brittleness is 1 300 ℃ to solidification point of the billet, the second temperature region of brittleness is 1 200-- 1 000 ℃, and the third temperature region of brittleness is 700-850 ℃ ; the steel is plastic at 850--1 000 ℃. The cracking sensitivity was studied in the different temperature zones of the brittleness for steel HRB335C and the target surface temperature curve for the secondary cooling is determined. With optimized process, the mathematical model of the steady temperature field with two-dimensional heat transfer for 150 mm×150 mm HRB335C steel billet was established to optimize the secondary cooling process. The conic relation of water distribution between secondary cooling water flux and casting speed is regressed. Keeping the surface temperature of billet before the straightening point above 1 000 ℃, the results of billet test indicate that there is free central shrinkage cavity. The billet defect is decreased greatly, and the quality of billet is obviously improved.
基金Sponsored by National Natural Science Foundation of China(51210007,51004029)
文摘An Eulerian-Eulerian two-fluid model was developed to study the vortex flow inside a slab continuous casting mold with argon gas injection. Interracial momentum transfer that accommodated various interracial forces including drag force, lift force, virtual mass force, and turbulent dispersion force was considered. Predicted results agree well vaith experimental measurements of the water model in two-phase flow pattern and vortex flow structures. Three typical flow patterns with different argon steel ratios (ASRs) have been obtained: "double roll", "three roll", and "single roll". The flow pattern inside the mold alternates among the three types or it may attain some intermedi ate condition. With increasing ASR, the positions of vortices move from the submerged entry nozzle to the narrow face of the mold, and the sizes of vortices are reduced gradually. The rotating directions of vortices are all from high velocity area to low velocity area. Two mechanisms of vortex formation on the top surface have been suggested, i. e. , congruous shear flow and incongruous shear flow.
文摘By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the different temperatures and strain rates. The Precipitations of AIN at different temperatures and the fractures of high-temperature tensile samples were observed by using TEM (transmission electron microscope) and SEM (scanning electron microscope). The factors affecting the brittle temperature zone were discussed.
基金This study was financially supported by the National Natural Science Foundation of China (No.50374043).
文摘The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute distribution in the columnar crystal zone was deduced, and the quantitative calculation was also made. The results show that the bulge and the interdendritic spacing are responsible for the flow speed of interdendritic melt. At the initial stage of solidification the bulge operates, and at the final stage the interdendritic spacing operates. The experimental results of macrosegregation in the slabs validated the calculated results of the flow speed of interdendritic melt, which shows that the calculated results are basically consistent with the experimental ones.
基金Item Sponsored by Deutsche Forschungsgemeinschaft (DFG) in frame of the SFB 609"Electromagnetic Flow Control in MetallurgyCrystal Growth and Electrochemistry"
文摘Model experiments with low melting point liquid metals are an important tool to investigate the flow structure and related transport processes in melt flows relevant for metallurgical applications.We present the new experimental facility LIMMCAST for modelling the continuous casting process of steel using the alloy SnBi at temperatures of 200-400℃.The parameters of the facility and the dimensions of the test sections will be given,and the possibilities for flow investigations in tundish,submerged entry nozzle and mould will be discussed.In addition,the smaller set-up Mini-LIMMCAST will be presented,which works with the room-temperature liquid alloy GaInSn.The main value of cold metal laboratory experiments consists in the capabilities to obtain quantitative flow measurements with a reasonable spatial and temporal resolution.New ultrasonic and electromagnetic techniques for measuring the velocity in liquid metal flows came up during the last decade allowing for a satisfying characterisation of flow quantities in the considered temperature range up to 400℃.First results from LIMMCAST and Mini-LIMMCAST will be presented covering the following phenomena:fully contacfless electromagnetic tomography of the flow in the mould,flow monitoring by a multitude of ultrasonic sensors,and analysis of the flow in the mould under the influence of an electromagnetic brake: intensification of the flow turbulence contrary to the expected flow damping,injection of argon bubbles through the stopper rod:occurrence of pressure oscillations.
基金Project supported bythe Inner Mongolian Autonomous Region Educational Department (NJ050667)
文摘In view of fine cracks occurred on the surface of BNbRE continuous casting slabs for heavy rail in the practical production, the effect of two factors, i.e. deformation temperature, deformation velocity, on thermo plasticity of BNbRE steel at the third brittle zone was quantitatively investigated on GLEEBLE-1500D thermal-mechanical simulator after measuring the RA-T curve of BNbRE steel. The results provide experimental data for optimizing the technology of continuous casting secondary cooling zone and avoiding the occurrence of fine surface cracks.
基金Supported by the National Natural Science Foundationof China-Bao Steel Conjunct Foundation ( No.5 0 1 74 0 31 )
文摘To simulate the phenomena in the mold region of continuous casting by coupling fluid flow and solidification, a three-dimensional mathematical model has been developed based on the K-ε turbulence equations and the SIMPLER algorithm. A pseudo source term was introduced into the energy equation to account for the latent heat and kinetic energy. The fluid flow in the mushy zone was calculated by defining the fluid viscosity as a function of the solid fraction in the mushy zone. Fine meshes in the solid region improve convergence and reduce iteration time. Comparison of the fluid flow and temperature distribution with and without solidification shows that although the solid shell in the mold is thin, it still greatly affects the flow pattern. The numerical results obtained provide details of the fluid flow and solidification phenomena which can be used to optimize the nozzle structure and other process parameters in continuous casting.
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan of China(Grant No. 2006BAE03A04)
文摘The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to the broadening of slab. It is concluded that the slab exposes to no constraint at the direction of narrow face. Because of the static pressure of molten steel, the slab deforms creepily in the direction that consequently results in the broadening of slab. The broadening of slab increases with casting speed and static pressure of molten steel. The decrease of secondary cooling intensity and strength of steel at high temperature also contribute to the broadening of slab. The micro-alloying plays an important role in improving the strength of steel and in reducing the broadening of slab.
基金funded by the National Natural Science Foundation of China(Nos.51974213 and 52174324)。
文摘In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.