Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me...Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.展开更多
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP)...Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of...Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.展开更多
A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to T...A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results isvisualized. The results show the main flow characteristics: There exists backflow and aberrantvelocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern isdiscerned around the shroud-suction side area; The relative velocity vector of solid phase iscloser to the pressure surface than that of liquid phase and the trend is more obvious with theincrease of diameter; The kinetic energy of turbulence k and the dissipation rate e reach theirpeaks at the corner of pressure and suction surface. The simulation results show a good agreementwith the experimental flow features in the impeller channel, which prove the turbulent model used isvalid and provide a theoretical design basis to non-clogging pumps.展开更多
The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lu...The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lubricated well and has shown remarkable tribological performance. Average coefficient of friction (COF) of Nitinol 60 is 0.6 under dry friction; however, average COF decreases to 0.1 under PAO oil lubrication. SEM image of the worn surface shows that Nitinol 60 exhibits excellent wear resistance and the wear mechanism is mainly adhesive wear. Flow pattern of oil-air flow in oil pipe was simulated by FLUENT software with VOF model for acquiring working performance of oil-air lubrication. The optimum velocity of oil and air at the inlet was achieved, which provides the great proposal for the design of experiment of oil-air lubrication of Nitinol 60 alloy. The simulation results showed that the optimum annular flow of flow pattern was obtained when air velocity is 10 m/s and oil velocity is 0.05 m/s. The formation mechanism of annular flow was also discussed in the present study.展开更多
3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods o...3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods of the feedstocks and reverts in recirculating fluidized bed, described the behavior of gas and solid through the gas-phase velocity, turbulence intensity, gas-solid sliding velocity, and density of particles. The results show that the feedstocks and reverts enters into absorption tower through two symmetrical feedings and are mixed with flue gas. Based on the respective analysis of each model and the com- parison analysis of the three models, this paper drew conclusions. The turbulence intensity of absorption tower is high, gas-solid sliding speed is big, and granule concentration near the axis is high, which has advantages for desulfurization and im- proving the utilization rate of absorbent.展开更多
Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The...Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding, the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diffusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s. The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.展开更多
A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed...A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.展开更多
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent ...In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.展开更多
Numerical simulations are performed both for the single airflow and air-PMtwo-phase flow in wall flow diesel participate filters (DPF) for the first time. The calculationdomain is divided into two regions. In. the inl...Numerical simulations are performed both for the single airflow and air-PMtwo-phase flow in wall flow diesel participate filters (DPF) for the first time. The calculationdomain is divided into two regions. In. the inlet and outlet flow channels, the simulations areperformed for the steady and laminar flow; In the porous filtration walls, the calculation model forflow in porous media is used. The Lagrange two-phase flow model is used to calculate the air-PMflow in DPF, for the dispersed phase (PM), its flow tracks are obtained by the integrating of theLagrange kinetic equation. The calculated velocity, pressure distribution and PM flow tracks in DPFare obtained, which exhibits the main flow characteristics in wall flow DPF and will be help for theoptimal design and performance prediction of wall flow DPF.展开更多
A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are s...A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs.展开更多
In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffecti...In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.展开更多
The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the ...The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.展开更多
In lost foam casting (LFC), the distribution of polymer beads during the bead filling process is not uniform, and the collision between polymer beads determines the distribution of two-phase flow of gas and solid. The...In lost foam casting (LFC), the distribution of polymer beads during the bead filling process is not uniform, and the collision between polymer beads determines the distribution of two-phase flow of gas and solid. The interaction between the gas and solid phases reveals as coupling effect of the force that gas exerts on particles or vice versa, or that among particles. The gas-solid flow in filling process is nonlinearity, which makes the coupling effect an essential point to carry out a simulation properly. Therefore, information of each particle's motion is important for acquiring the law of filling process. In bead filling process, compressed air is pressed into mold cavity, and discharged from gas vent, creating a pressure difference between outer and inner space near the gas vent. This pressure difference directly changes the spatial distribution and motion trace of gas and solid phases. In this paper, Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) are employed to simulate the fluid dynamic character based on Newton's Third Law of Motion. The simulation results of some casting products such as pressure plate and valve handle are compared with the result obtained from practical experiment in order to test the feasibility of DEM. The comparison shows that this DEM method can be a very promising tool in the mould filling simulation of beads' movement.展开更多
In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects an...In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects and affect the surface quality of the casting.The influential factors of the filling process are realized in thisresearch.Optimization of the filling process,enhancement of efficiency,decrease of waste,etc.,are obtained bythe numerical simulation of the filling process using a computer.The equations governing the dense gas-solid two-phase flow are established,and the physical significanceof each equation is discussed.The Euler/Lagrange numerical model is used to simulate the fluid dynamiccharacteristics of the dense two-phase flow during the mould filling process in lost foam casting.The experimentsand numerical results showed that this method can be a very promising tool in the mould filling simulation of beads’movement.展开更多
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified...Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.展开更多
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity...Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.展开更多
文摘Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).
基金supported by the National High-Tech.R&D Program of China(the National 863 plans projects,Grant No.2007AA03Z352)
文摘Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金Project(51375498)supported by the National Natural Science Foundation of China
文摘Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.
文摘A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results isvisualized. The results show the main flow characteristics: There exists backflow and aberrantvelocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern isdiscerned around the shroud-suction side area; The relative velocity vector of solid phase iscloser to the pressure surface than that of liquid phase and the trend is more obvious with theincrease of diameter; The kinetic energy of turbulence k and the dissipation rate e reach theirpeaks at the corner of pressure and suction surface. The simulation results show a good agreementwith the experimental flow features in the impeller channel, which prove the turbulent model used isvalid and provide a theoretical design basis to non-clogging pumps.
基金Project (2012M511993) supported by China Postdoctoral Science FoundationProject (TPL1202) supported by the Open Fund Program of the State Key Laboratory of Traction Power, Southwest Jiaotong University, China
文摘The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lubricated well and has shown remarkable tribological performance. Average coefficient of friction (COF) of Nitinol 60 is 0.6 under dry friction; however, average COF decreases to 0.1 under PAO oil lubrication. SEM image of the worn surface shows that Nitinol 60 exhibits excellent wear resistance and the wear mechanism is mainly adhesive wear. Flow pattern of oil-air flow in oil pipe was simulated by FLUENT software with VOF model for acquiring working performance of oil-air lubrication. The optimum velocity of oil and air at the inlet was achieved, which provides the great proposal for the design of experiment of oil-air lubrication of Nitinol 60 alloy. The simulation results showed that the optimum annular flow of flow pattern was obtained when air velocity is 10 m/s and oil velocity is 0.05 m/s. The formation mechanism of annular flow was also discussed in the present study.
文摘3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods of the feedstocks and reverts in recirculating fluidized bed, described the behavior of gas and solid through the gas-phase velocity, turbulence intensity, gas-solid sliding velocity, and density of particles. The results show that the feedstocks and reverts enters into absorption tower through two symmetrical feedings and are mixed with flue gas. Based on the respective analysis of each model and the com- parison analysis of the three models, this paper drew conclusions. The turbulence intensity of absorption tower is high, gas-solid sliding speed is big, and granule concentration near the axis is high, which has advantages for desulfurization and im- proving the utilization rate of absorbent.
基金Project(G1999064903) supported by the National Key Fundamental Research and Development Program of China
文摘Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding, the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diffusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s. The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.
基金Special Funds for Major State Basic Research Projects of China(G1999022200)
文摘A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.
基金Sponsored by the National Key Projects of Fundamental Research of China.
文摘In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
文摘Numerical simulations are performed both for the single airflow and air-PMtwo-phase flow in wall flow diesel participate filters (DPF) for the first time. The calculationdomain is divided into two regions. In. the inlet and outlet flow channels, the simulations areperformed for the steady and laminar flow; In the porous filtration walls, the calculation model forflow in porous media is used. The Lagrange two-phase flow model is used to calculate the air-PMflow in DPF, for the dispersed phase (PM), its flow tracks are obtained by the integrating of theLagrange kinetic equation. The calculated velocity, pressure distribution and PM flow tracks in DPFare obtained, which exhibits the main flow characteristics in wall flow DPF and will be help for theoptimal design and performance prediction of wall flow DPF.
基金supported by the China Postdoctoral Science Foundation(2021M702304)and Natural Science Foundation of Shandong Province(ZR2021QE260).
文摘A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs.
文摘In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.
基金Financial supports for this work provided by the National High Technology Research and Development Program of China (No.2008BAB31B02) is gratefully acknowledged
文摘The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.
基金supported by The Second Doctor Innovative Projects of Shenzhen Institute of Information Technology (BC2009013)
文摘In lost foam casting (LFC), the distribution of polymer beads during the bead filling process is not uniform, and the collision between polymer beads determines the distribution of two-phase flow of gas and solid. The interaction between the gas and solid phases reveals as coupling effect of the force that gas exerts on particles or vice versa, or that among particles. The gas-solid flow in filling process is nonlinearity, which makes the coupling effect an essential point to carry out a simulation properly. Therefore, information of each particle's motion is important for acquiring the law of filling process. In bead filling process, compressed air is pressed into mold cavity, and discharged from gas vent, creating a pressure difference between outer and inner space near the gas vent. This pressure difference directly changes the spatial distribution and motion trace of gas and solid phases. In this paper, Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) are employed to simulate the fluid dynamic character based on Newton's Third Law of Motion. The simulation results of some casting products such as pressure plate and valve handle are compared with the result obtained from practical experiment in order to test the feasibility of DEM. The comparison shows that this DEM method can be a very promising tool in the mould filling simulation of beads' movement.
基金The National High Technology Research and Development Program of China(863Program)(2006AA04Z140)The National Natural Science Foundation of China(NSFC)(50605024)
文摘In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects and affect the surface quality of the casting.The influential factors of the filling process are realized in thisresearch.Optimization of the filling process,enhancement of efficiency,decrease of waste,etc.,are obtained bythe numerical simulation of the filling process using a computer.The equations governing the dense gas-solid two-phase flow are established,and the physical significanceof each equation is discussed.The Euler/Lagrange numerical model is used to simulate the fluid dynamiccharacteristics of the dense two-phase flow during the mould filling process in lost foam casting.The experimentsand numerical results showed that this method can be a very promising tool in the mould filling simulation of beads’movement.
基金supported by Innovative Team Introduction Projects for New Universities in Jinan City(No.2021GXRC075).
文摘Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.
基金Supported by the National Natural Science Foundation of China (No. 29876022) and Grant of State Key Laboratory of High Speed Hydrodynamics (No. 2007).
文摘Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.