With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan...With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.展开更多
As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it ...As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop.展开更多
Capillary pressure plays a crucial role in determining the spatial distribution of oil and gas,particularly in medium-to-low permeability reservoirs,where it is closely linked to the rock’s pore structure and wettabi...Capillary pressure plays a crucial role in determining the spatial distribution of oil and gas,particularly in medium-to-low permeability reservoirs,where it is closely linked to the rock’s pore structure and wettability.In these environments,pore structure is the primary factor influencing capillary pressure,with different pore types affecting fluid transport through varying degrees of hydrocarbon saturation.One of the main challenges in characterizing pore structure is how to use data from core plugs to establish a relationship with microscopic pore and throat properties,enabling more accurate predictions of capillary pressure.While special core analysis laboratory experiments are effective,they are time-consuming and expensive.In contrast,nuclear magnetic resonance(NMR)measurements,which provide in-formation on pore body size distribution,are faster and can be leveraged to estimate capillary pressure using machine learning algorithms.Recently,artificial in-telligence methods have also been applied to capillary pressure prediction(Qi et al.,2024).Currently,no readily applicable predictive model exists for estimating an entire capillary pressure curve directly from standard petrophysical logs and core data.Although porescale imaging and network modeling techniques can compute capillary pressure from micro-CT rock images(Øren and Bakke,2003;Valvatne and Blunt,2004),these approaches are time-consuming,limited to small sample volumes,and not yet practical for routine reservoir evaluation.In this study,we introduce rock classification techniques and implement a data-driven machine learning(ML)method to estimate saturation-dependent capillary pressure from core petrophysical properties.The new model integrates cumulative NMR data and densely resampled core measurements as training data,with prediction errors quantified throughout the process.To approach the common condition of sparsely sampled training data,we transformed the prediction problem into an over-determined one by applying composite fitting to both capillary pressure and pore throat size distribution,and Gaussian cumulative distribution fitting to the NMR T_(2) measurements,generating evenly sampled data points.Using these preprocessed input features,we performed classification based on the natural logarithm of the permeability-to-porosity ratio(ln(k/ϕ))to cluster distinct rock types.For each rock class,we applied regression techniques-such as random forest(RF),k-nearest neighbors(k-NN),extreme gradient boosting(XGB),and artificial neural networks(ANN)-to estimate the logarithm of capillary pressure.The methods were tested on blind core samples,and performance comparisons among different estimation methods were based on the relative standard error of predictions.Results indicate that NMR data are sensitive to the pore structure of rocks and significantly improve the prediction of capillary pressure and pore throat size distribution.Extreme Gradient Boosting and Random Forest models performed the best,with average estimation errors of 5% and 10%,respectively,for capillary pressure and pore throat size distribution.In contrast,prediction errors increased to 25% when NMR T_(2) data were excluded as an input feature.The use of traditional Gaussian model fitting,and higher-resolution resampling ensured that the training data covered a broad range of variability.Including NMR T_(2) data as an input feature enhanced the model’s ability to capture multimodal peaks in unconventional rocks,making the prediction problem overdetermined.By predicting vector functions from vector input features,we effectively reduced prediction errors.This interpretation workflow can be used to construct representative classification models and estimate capillary pressure across a wide saturation range.展开更多
While a healthy lifestyle is known to reduce the risk of stroke,the extent to which blood pressure(BP)mediates this association remains unclear.The present study aimed to quantify the mediating role of BP in the assoc...While a healthy lifestyle is known to reduce the risk of stroke,the extent to which blood pressure(BP)mediates this association remains unclear.The present study aimed to quantify the mediating role of BP in the association between combined lifestyle factors and stroke incidence.Using data from 51929 participants free of major cardiovascular diseases or cancer at baseline,we employed structural equation modeling to assess the mediating effects of systolic(SBP)and diastolic(DBP)blood pressure.During the follow-up,2811 incident stroke cases were identified.A healthy lifestyle was significantly associated with a reduced risk of stroke,with SBP mediating 44.70%(β=-0.0014,95%confidence interval[CI]:-0.0016 to-0.0012)and DBP mediating 37.81%(β=-0.0012,95%CI:-0.0015 to-0.0009)of this association.The mediating effects were attenuated but remained significant for ischemic stroke(SBP:33.21%;DBP:27.24%).In conclusion,approximately two-fifths of the protective association between a healthy lifestyle and stroke may be mediated by BP.These findings suggest that BP control may serve as an important early indicator for evaluating the effectiveness of lifestyle interventions in reducing stroke risk.展开更多
The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence...The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.展开更多
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,...Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.展开更多
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct...Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.展开更多
Ammonia plays a critical role in our society,not only as the source for fertilizers and other essential chemicals,but also as a promising hydrogen carrier due to its high energy density and ease of storage and transpo...Ammonia plays a critical role in our society,not only as the source for fertilizers and other essential chemicals,but also as a promising hydrogen carrier due to its high energy density and ease of storage and transportation.However,the conventional Haber-Bosch process is energy-intensive and costly.Developing a more energy efficient route for ammonia production is currently a holy grail in scientific society.This study reports a plasmonic semiconductor catalyst,molybdenum oxynitride(Mo2N/MoO_(2-x))nanosheet,that enables the ambient-pressure NH3 synthesis under light illumination.This catalyst achieves a remarkable NH3 production rate of 2338μmol·g^(-1)·h^(-1) at 400℃ and 857μmol·g^(-1)·h^(-1) at room temperature.Notably,we present the evidence for the coexistence of both nonthermal and photothermal effects,distinguishing this system from photothermally driven routes.This work demonstrates a viable pathway for NH3 production with low monetary and energetic investments and potential for distributed NH3 synthesis utilizing only water,air,and sunlight.展开更多
Objective Evidence suggests that depleted gut microbialα-diversity is associated with hypertension;however,whether metabolic markers affect this relationship remains unknown.We aimed to determine the potential metabo...Objective Evidence suggests that depleted gut microbialα-diversity is associated with hypertension;however,whether metabolic markers affect this relationship remains unknown.We aimed to determine the potential metabolites mediating the associations ofα-diversity with blood pressure(BP)and BP variability(BPV).Methods Metagenomics and plasma targeted metabolomics were conducted on 523 Chinese participants from the MetaSalt study.The 24-hour,daytime,and nighttime BP and BPV were calculated based on ambulatory BP measurements.Linear mixed models were used to characterize the relationships betweenα-diversity(Shannon and Chao1 index)and BP indices.Mediation analyses were performed to assess the contribution of metabolites to the observed associations.The influence of key metabolites on hypertension was further evaluated in a prospective cohort of 2,169 participants.Results Gut microbial richness(Chao1)was negatively associated with 24-hour systolic BP,daytime systolic BP,daytime diastolic BP,24-hour systolic BPV,and nighttime systolic BPV(P<0.05).Moreover,26 metabolites were strongly associated with richness(Bonferroni P<0.05).Among them,four key metabolites(imidazole propionate,2-hydroxy-3-methylbutyric acid,homovanillic acid,and hydrocinnamic acid)mediated the associations between richness and BP indices(proportions of mediating effects:14.1%–67.4%).These key metabolites were also associated with hypertension in the prospective cohort.For example,each 1-standard deviation unit increase in hydrocinnamic acid significantly reduced the risk of prevalent(OR[95%CI]=0.90[0.82,0.99];P=0.03)and incident hypertension(HR[95%CI]=0.83[0.71,0.96];P=0.01).Conclusion Our results suggest that gut microbial richness correlates with lower BP and BPV,and that certain metabolites mediate these associations.These findings provide novel insights into the pathogenesis and prevention of hypertension.展开更多
Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low...Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low-dose curcumin(50 mg/kg),high-dose curcumin(200 mg/kg),high-dose curcumin plus a scrambled control antagomir,or high-dose curcumin plus anti-miR-29b treatments.Cardiac function was assessed by echocardiography.Fibrosis was evaluated by histology,collagen volume fraction,and hydroxyproline content.Expression of miR-29b,HDAC4,and fibrosis-related markers(Col1a1,Col3a1,TGF-β1)was measured by quantitative RT-PCR and Western blotting assays.Myocardial procollagen type I carboxy-terminal propeptide was determined by ELISA,and HDAC4-specific enzymatic activity was assayed using a fluorogenic kit.Results:Curcumin improved cardiac function,reduced fibrosis,restored miR-29b expression,and suppressed HDAC4 expression and activity in a dose-dependent manner.Furthermore,curcumin decreased myocardial procollagen type I carboxy-terminal propeptide levels,confirming reduced collagen synthesis.Anti-miR-29b administration partially abrogated the antifibrotic and cardioprotective effects of curcumin.Conclusions:Curcumin attenuates pressure overload-induced cardiac fibrosis and dysfunction in a TAC mouse model via modulation of the miR-29b/HDAC4 axis and suppression of collagen synthesis.展开更多
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg...The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.展开更多
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field...Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.展开更多
In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experime...In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.展开更多
A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were dev...A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.展开更多
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ...The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.展开更多
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ...The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.展开更多
Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid...Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related n...A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases.展开更多
While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct ...While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.展开更多
基金supported by the Beijing Municipal Science&Technology Commission(Z231100006123010).
文摘With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.
基金Science Foundation for Distinguished Young Scholars 2020-JCJQ-ZQ-042 Intelligent and Bionic Spacecraft Thermal Control Technology Inspired by Tree Sap Transport Principle.
文摘As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop.
文摘Capillary pressure plays a crucial role in determining the spatial distribution of oil and gas,particularly in medium-to-low permeability reservoirs,where it is closely linked to the rock’s pore structure and wettability.In these environments,pore structure is the primary factor influencing capillary pressure,with different pore types affecting fluid transport through varying degrees of hydrocarbon saturation.One of the main challenges in characterizing pore structure is how to use data from core plugs to establish a relationship with microscopic pore and throat properties,enabling more accurate predictions of capillary pressure.While special core analysis laboratory experiments are effective,they are time-consuming and expensive.In contrast,nuclear magnetic resonance(NMR)measurements,which provide in-formation on pore body size distribution,are faster and can be leveraged to estimate capillary pressure using machine learning algorithms.Recently,artificial in-telligence methods have also been applied to capillary pressure prediction(Qi et al.,2024).Currently,no readily applicable predictive model exists for estimating an entire capillary pressure curve directly from standard petrophysical logs and core data.Although porescale imaging and network modeling techniques can compute capillary pressure from micro-CT rock images(Øren and Bakke,2003;Valvatne and Blunt,2004),these approaches are time-consuming,limited to small sample volumes,and not yet practical for routine reservoir evaluation.In this study,we introduce rock classification techniques and implement a data-driven machine learning(ML)method to estimate saturation-dependent capillary pressure from core petrophysical properties.The new model integrates cumulative NMR data and densely resampled core measurements as training data,with prediction errors quantified throughout the process.To approach the common condition of sparsely sampled training data,we transformed the prediction problem into an over-determined one by applying composite fitting to both capillary pressure and pore throat size distribution,and Gaussian cumulative distribution fitting to the NMR T_(2) measurements,generating evenly sampled data points.Using these preprocessed input features,we performed classification based on the natural logarithm of the permeability-to-porosity ratio(ln(k/ϕ))to cluster distinct rock types.For each rock class,we applied regression techniques-such as random forest(RF),k-nearest neighbors(k-NN),extreme gradient boosting(XGB),and artificial neural networks(ANN)-to estimate the logarithm of capillary pressure.The methods were tested on blind core samples,and performance comparisons among different estimation methods were based on the relative standard error of predictions.Results indicate that NMR data are sensitive to the pore structure of rocks and significantly improve the prediction of capillary pressure and pore throat size distribution.Extreme Gradient Boosting and Random Forest models performed the best,with average estimation errors of 5% and 10%,respectively,for capillary pressure and pore throat size distribution.In contrast,prediction errors increased to 25% when NMR T_(2) data were excluded as an input feature.The use of traditional Gaussian model fitting,and higher-resolution resampling ensured that the training data covered a broad range of variability.Including NMR T_(2) data as an input feature enhanced the model’s ability to capture multimodal peaks in unconventional rocks,making the prediction problem overdetermined.By predicting vector functions from vector input features,we effectively reduced prediction errors.This interpretation workflow can be used to construct representative classification models and estimate capillary pressure across a wide saturation range.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.82192900,82192901,82192904,81390540,and 91846303 to L.L.)the National Key Research and Development Program of China(Grant No.2016YFC0900500 to Y.G.)the Kadoorie Charitable Foundation in Hong Kong,and the Wellcome Trust in the UK(Grant/Award Nos.088158/Z/09/Z,104085/Z/14/Z,and 202922/Z/16/Z to Z.C.).
文摘While a healthy lifestyle is known to reduce the risk of stroke,the extent to which blood pressure(BP)mediates this association remains unclear.The present study aimed to quantify the mediating role of BP in the association between combined lifestyle factors and stroke incidence.Using data from 51929 participants free of major cardiovascular diseases or cancer at baseline,we employed structural equation modeling to assess the mediating effects of systolic(SBP)and diastolic(DBP)blood pressure.During the follow-up,2811 incident stroke cases were identified.A healthy lifestyle was significantly associated with a reduced risk of stroke,with SBP mediating 44.70%(β=-0.0014,95%confidence interval[CI]:-0.0016 to-0.0012)and DBP mediating 37.81%(β=-0.0012,95%CI:-0.0015 to-0.0009)of this association.The mediating effects were attenuated but remained significant for ischemic stroke(SBP:33.21%;DBP:27.24%).In conclusion,approximately two-fifths of the protective association between a healthy lifestyle and stroke may be mediated by BP.These findings suggest that BP control may serve as an important early indicator for evaluating the effectiveness of lifestyle interventions in reducing stroke risk.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325027,12274448,T2350007,12404239,12174041,12325405,12090054,and T2221001)the National Key R&D Program of China (Grant No.2022YFF0503504)。
文摘The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.
基金supported by the Basic Science Research Program(2023R1A2C3004336,RS-202300243807)&Regional Leading Research Center(RS-202400405278)through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)。
文摘Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.
基金supported by Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korea Government(MOTIE)(RS-2022-00154720,Technology Innovation Program Development of next-generation power semiconductor based on Si-on-SiC structure)the National Research Foundation of Korea(NRF)by the Korea government(RS-2023-NR076826)Global-Learning&Academic Research Institution for Master's·PhD students,and Postdocs(LAMP)Program of the National Research Foundation of Korea(NRF)by the Ministry of Education(No.RS-2024-00443714).
文摘Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.
基金financially supported by the National Science Foundation(No.CHE-1954838)supported by the National Science Foundation(award number ECCS-2025064)as part of the National Nanotechnology Coordinated Infrastructure(NNCI).
文摘Ammonia plays a critical role in our society,not only as the source for fertilizers and other essential chemicals,but also as a promising hydrogen carrier due to its high energy density and ease of storage and transportation.However,the conventional Haber-Bosch process is energy-intensive and costly.Developing a more energy efficient route for ammonia production is currently a holy grail in scientific society.This study reports a plasmonic semiconductor catalyst,molybdenum oxynitride(Mo2N/MoO_(2-x))nanosheet,that enables the ambient-pressure NH3 synthesis under light illumination.This catalyst achieves a remarkable NH3 production rate of 2338μmol·g^(-1)·h^(-1) at 400℃ and 857μmol·g^(-1)·h^(-1) at room temperature.Notably,we present the evidence for the coexistence of both nonthermal and photothermal effects,distinguishing this system from photothermally driven routes.This work demonstrates a viable pathway for NH3 production with low monetary and energetic investments and potential for distributed NH3 synthesis utilizing only water,air,and sunlight.
基金supported by the National Science and Technology Major Program for Noncommunicable Chronic Diseases(2023ZD0503500)the National Natural Science Foundation of China(82030102,12126602,91857118)+1 种基金the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2M-1-010,2019-I2M-2-003)the National High Level Hospital Clinical Research Funding(2022-GSP-GG-1,2022-GSP-GG-2)。
文摘Objective Evidence suggests that depleted gut microbialα-diversity is associated with hypertension;however,whether metabolic markers affect this relationship remains unknown.We aimed to determine the potential metabolites mediating the associations ofα-diversity with blood pressure(BP)and BP variability(BPV).Methods Metagenomics and plasma targeted metabolomics were conducted on 523 Chinese participants from the MetaSalt study.The 24-hour,daytime,and nighttime BP and BPV were calculated based on ambulatory BP measurements.Linear mixed models were used to characterize the relationships betweenα-diversity(Shannon and Chao1 index)and BP indices.Mediation analyses were performed to assess the contribution of metabolites to the observed associations.The influence of key metabolites on hypertension was further evaluated in a prospective cohort of 2,169 participants.Results Gut microbial richness(Chao1)was negatively associated with 24-hour systolic BP,daytime systolic BP,daytime diastolic BP,24-hour systolic BPV,and nighttime systolic BPV(P<0.05).Moreover,26 metabolites were strongly associated with richness(Bonferroni P<0.05).Among them,four key metabolites(imidazole propionate,2-hydroxy-3-methylbutyric acid,homovanillic acid,and hydrocinnamic acid)mediated the associations between richness and BP indices(proportions of mediating effects:14.1%–67.4%).These key metabolites were also associated with hypertension in the prospective cohort.For example,each 1-standard deviation unit increase in hydrocinnamic acid significantly reduced the risk of prevalent(OR[95%CI]=0.90[0.82,0.99];P=0.03)and incident hypertension(HR[95%CI]=0.83[0.71,0.96];P=0.01).Conclusion Our results suggest that gut microbial richness correlates with lower BP and BPV,and that certain metabolites mediate these associations.These findings provide novel insights into the pathogenesis and prevention of hypertension.
基金supported by China International Medical Foundation(Z-2019-42-1908-4)Natural Science Basic Research Program of Shaanxi Province(2019JM-440).
文摘Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low-dose curcumin(50 mg/kg),high-dose curcumin(200 mg/kg),high-dose curcumin plus a scrambled control antagomir,or high-dose curcumin plus anti-miR-29b treatments.Cardiac function was assessed by echocardiography.Fibrosis was evaluated by histology,collagen volume fraction,and hydroxyproline content.Expression of miR-29b,HDAC4,and fibrosis-related markers(Col1a1,Col3a1,TGF-β1)was measured by quantitative RT-PCR and Western blotting assays.Myocardial procollagen type I carboxy-terminal propeptide was determined by ELISA,and HDAC4-specific enzymatic activity was assayed using a fluorogenic kit.Results:Curcumin improved cardiac function,reduced fibrosis,restored miR-29b expression,and suppressed HDAC4 expression and activity in a dose-dependent manner.Furthermore,curcumin decreased myocardial procollagen type I carboxy-terminal propeptide levels,confirming reduced collagen synthesis.Anti-miR-29b administration partially abrogated the antifibrotic and cardioprotective effects of curcumin.Conclusions:Curcumin attenuates pressure overload-induced cardiac fibrosis and dysfunction in a TAC mouse model via modulation of the miR-29b/HDAC4 axis and suppression of collagen synthesis.
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China (Grant Nos.2024YFA1408000,12474097,and2023YFA1406001)+2 种基金the Guangdong Provincial Quantum Science Strategic Initiative (Grant No.GDZX2201001)the Center for Computational Science and Engineering at Southern University of Science and Technology,the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen(for J.L.Z.and Y.L.)the Chinese funding sources applied via HPSTAR。
文摘The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(No.12274177 and 12304261)the China Postdoctoral Science Foundation(No.2024M751076)。
文摘Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
基金supported by the National Natural Science Foundation of China(No.52474396 and 52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201)。
文摘In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.
基金part of a key project carried out in 2009–2010financially supported by the National Key Sci-Tech Major Special Item (Grant No. 2009ZX05038)
文摘A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325004 and 52161160330)the National Natural Science Foundation of China (Grants No.12504233)+2 种基金Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0606900)the Talent Hub for “AI+New Materials” Basic Researchthe Key Research and Development Program of Ningbo (Grant No.2025Z088)。
文摘The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.
基金Project(51574045)supported by the National Nature Science Foundation of China
文摘The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.
基金the National Science and Technology Major Project of China(No.2016ZX05028-004-003).
文摘Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
文摘A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases.
基金University of Queensland International Scholarship(UQI)for its support(Grant No.42719692)。
文摘While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.