We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays, with the two nearest cavities nonlocally coupled to a two-level atom. The single photon transmissi...We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays, with the two nearest cavities nonlocally coupled to a two-level atom. The single photon transmission amplitude is solved exactly by employing the quasi-boson picture. We investigate two different situations of local and nonlocal couplings, respectively. Comparing the dissipative case with the nondissipative one reveals that the dissipation of the system increases the middle dip and lowers the peak of the single photon transmission amplitudes, broadening the line width of the transport spectrum. It should be noted that the influence of the cavity dissipation to the single photon transport spectrum is asymmet- ric. By comparing the nonlocal coupling with the local one, one can find that the enhancement of the middle dip of single photon transmission amplitudes is mostly caused by the atom dissipation and that the reduced peak is mainly caused by the cavity dissipation, no matter whether it is a nonlocal or local coupling case. Whereas in the nonlocal coupling case, when the coupling strength gets stronger, the cavity dissipation has a greater effect on the single photon transport spectrum and the atom dissipation affection becomes weak, so it can be ignored.展开更多
We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the...We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the atomic ensemble can be dramatically modified. When the collectively enhanced atom–cavity coupling is strong enough and the cavity decay rate is much smaller than the atomic damping rate, an electromagnetically induced transparency-like coherent phenomenon emerges with a dip absorption for the response of the two-level atoms in the cavity without driving, and thus is called vacuum induced transparency. We also show the slow light with very low group velocity in such an atomic ensemble.展开更多
The effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-mode field are investigated. It is shown that the time evolution of the atomic population is mainly controlle...The effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-mode field are investigated. It is shown that the time evolution of the atomic population is mainly controlled by the coupling constants and the frequency of the low frequency field, which leads to a low frequency modulation function for the time evolution of the upper state population. The amplitude of the modulation function becomes larger as the coupling constants increase. The frequency of the modulation function is proportional to the frequency of the low frequency field, and decreases with increasing coupling constant.展开更多
This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the...This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the strength of the pumping field. An equivalent incoherent pumping rate is introduced in this simplified theoretical model which exploits the dependence of this feature. The experimental observation is presented as evidence of the breaking point where the injected power is about 0.08 mW.展开更多
Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupli...Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupling constants between atoms,the atomic initial states and the photon number of transition on the entanglement evolution of two coupling two-level atoms are discussed.The results obtained using the numerical method show that the entanglement of two atoms is related with coupling constants between atoms,the atomic initial states and the photon number of transition.The two-atom entanglement state will forever stay in the maximum entanglement state when the initial state is β11〉.When the initial state of two atoms is β01〉,the entanglement of two atoms displays periodic oscillation behavior.And its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.On the other hand,when the initial state is β00〉 or β10〉,the entanglement of two atoms displays quasiperiodic oscillation behavior and its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.展开更多
In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Ke...In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Kerr medium (non-linear) and the Stark effect. The wave function of the complete system interacting with a coherent and the thermal field is calculated numerically affected by ID, Kerr (non-linear) and Stark effects. It has been seen that the Stark, Kerr, ID and the thermal environment have a significant effect during the time evolution of the quantum system. Quantum Fisher information (QFI) and QE decrease as the value of the ID parameter is increased in the thermal field without the atomic movement. It is seen that QFI and von Neumann entropy (VNE) show an opposite and periodic response in the presence of atomic motion. The non-linear Kerr medium has a more prominent and significant effect on the QE as the value of the Kerr parameter is decreased. At smaller values of the non-linear Kerr parameter, the VNE increases, however, QFI decreases, so QFI and VNE have a monotonic connection with one another. As the value of the Kerr parameter is increased, the effect of non-linear Kerr doesn’t stay critical on both QFI and QE. However, a periodic response of QE is seen because of the atomic movement which becomes modest under natural impacts. Moreover, it has been seen that QFI and QE rot soon at the smaller values of the Stark parameter. However, as the value of the Stark parameter is increased, the QFI and QE show periodic response even when the atomic movement is absent.展开更多
The coefficient of selective reflection at oblique incidence from two-level atoms confined between two dielectric walls is calculated in this paper. It is found to be related to the transient behaviour of atoms after ...The coefficient of selective reflection at oblique incidence from two-level atoms confined between two dielectric walls is calculated in this paper. It is found to be related to the transient behaviour of atoms after colliding with the wall and the distribution of the field inside the vapour corresponds to L/λ, with L the thickness of the film and λ the incident wavelength. We find that the sub-Doppler structure is manifest both for normal incidence and small angle oblique incidence, It is feasible to detect the real part of selective reflection in several cases that have not been achieved before.展开更多
From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fie...From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.展开更多
In this paper, we study the dynamics of the atomic inversion, scaled atomic Wehrl entropy and marginal atomic Wehrl density for a single two-level atom interacting with SU(1,1) quantum system. We obtain the expectatio...In this paper, we study the dynamics of the atomic inversion, scaled atomic Wehrl entropy and marginal atomic Wehrl density for a single two-level atom interacting with SU(1,1) quantum system. We obtain the expectation values of the atomic variables using specific initial conditions. We examine the effects of different parameters on the scaled atomic Wehrl entropy and marginal atomic Wehrl density. We observe an interesting monotonic relation between the different physical quantities for different values of the initial atomic position and detuning parameter.展开更多
The two-level atom is described by Pauli sign and environment is described by infinite harmonic particle thermal reservoir.We have studied the entanglement of two-level atoms which are put in the strongly thermal radi...The two-level atom is described by Pauli sign and environment is described by infinite harmonic particle thermal reservoir.We have studied the entanglement of two-level atoms which are put in the strongly thermal radiation field.The two-level atoms' reducible density rectangular array is obtained.We discuss the properties of entanglement by virtue of concurrence.It is shown that the two two-level atoms initially situated in different coherent superposition states,entanglement of atoms have obvious dissimilarity.展开更多
We have deduced analytical solutions of an energy level diagram of the doubly driven/dressed atom for a two-level atom exposed to a strong near-resonant bichromatic laser field in a special case, i.e., the bichromatic...We have deduced analytical solutions of an energy level diagram of the doubly driven/dressed atom for a two-level atom exposed to a strong near-resonant bichromatic laser field in a special case, i.e., the bichromatic field with frequencies ω1 and ω2, and Rabi frequencies ?1 and ?2, in which the first coupling field of ?1 acts on the bare atomic levels, and then the resulting singly dressed states are driven by the second coupling field of ?2, thus resulting in the doubly dressed atom.We have measured the probe absorption spectra of a doubly driven two-level atom. The system consists of 52S1/2, F= 2 and 5~2P_(3/2), F'= 3 states of ^(87)Rb atoms in a magneto-optical trap(MOT) as well as the cooling/trapping beams and an additional coupling field. As for the spectroscopic properties of the doubly driven two-level atom, theoretical analytical solutions are in general agreement with the experimental spectrum as a whole.展开更多
In this paper we study the dynamics of the atomic inversion, von Neumann entropy and entropy squeezing for moving and non-moving two-level atoms interacting with a Perelomov coherent state. The final state of the syst...In this paper we study the dynamics of the atomic inversion, von Neumann entropy and entropy squeezing for moving and non-moving two-level atoms interacting with a Perelomov coherent state. The final state of the system using specific initial conditions is obtained. The effects of Perelomov and detuning parameters are examined in the absence and presence of the atomic motion. Important phenomena such as the collapse and revival are shown to be very sensitive to the variation of the Perelomov parameter in the presence of detuning parameter. The results show that the Perelomov parameter is very useful in generating a high amount of entanglement due to variation of the detuning parameter.展开更多
Herein, we present an approach to look for the best phenomenon to measure quantum correlation. The system of two isolated qubits each interacting with a single-mode cavity was theoretically created to study the quantu...Herein, we present an approach to look for the best phenomenon to measure quantum correlation. The system of two isolated qubits each interacting with a single-mode cavity was theoretically created to study the quantum correlation. Some of the phenomena, such as the quantum discord and concurrence, were generated through such a system. The influences of initial state purity, qubit motion, and detuning parameters were discussed for the phenomena. These parameters for a specific value show that the behavior of phenomena are analogous. It is interesting to mention that some values of detuning undergo a sudden death of phenomena, and the quantum discord still captures the qubits quantum correlation. We predict that the quantum discord may be a better measure of quantum correlation than concurrence.展开更多
A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic f...A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic field intensity and vapor temperature, the group velocity of probe light can be controlled in an appropriate region.展开更多
In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution,...In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately.Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion(which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than(but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system.展开更多
Proposal for the teleportation of two-atom state is presented. It is based on the simultaneous interaction of two two-level atoms with a single-mode cavity with a filed of n photons. In the proposed scheme, two pairs ...Proposal for the teleportation of two-atom state is presented. It is based on the simultaneous interaction of two two-level atoms with a single-mode cavity with a filed of n photons. In the proposed scheme, two pairs of EPR state are used as quantum channel to teleport an unknown two-atom state. The completed time is greatly reduced and cavity field is not required to be detected are shown to be the distinct features of the presented scheme.展开更多
We propose a scheme to simultaneously achieve nonreciprocal conventional photon blockade(NCPB) and unconventional photon blockade(NUPB) in a spinning resonator coupled to two two-level atoms. We show that, with the un...We propose a scheme to simultaneously achieve nonreciprocal conventional photon blockade(NCPB) and unconventional photon blockade(NUPB) in a spinning resonator coupled to two two-level atoms. We show that, with the unequal frequency detuning of cavity and atoms from the driving laser, the quantum efect of the nonreciprocal photon blockade can be realized based on two regimes under diferent driving strengths. We confirm that, the NUPB results from the quantum destructive interference between distinct pathways when the driving laser is loaded from one side, whereas the destructive interference is broken when the system is driven from the other side. Moreover, the NCPB originates from whether the single excitation resonance condition is satisfied, corresponding to the opposite driving direction in contrast to the former. Besides, we obtain the optimal nonreciprocal results by appropriately choosing the system parameters. Interestingly, the UPB exhibits stronger robustness to thermal noises,and the nonreciprocity still exists up to a high thermal excitation. This work provides an alternative way to achieve nonreciprocal quantum devices based on the nonreciprocal photon blockade, which may help to develop information network processing.展开更多
From the viewpoint of quantum information, this paper proposes a concept and a definition of the atomic optimal entropy squeezing sudden generation (AOESSG) for the system of an effective two-level moving atom which...From the viewpoint of quantum information, this paper proposes a concept and a definition of the atomic optimal entropy squeezing sudden generation (AOESSG) for the system of an effective two-level moving atom which entangles with the two-mode coherent fields. It also researches the relationship between the AOESSG and entanglement sudden death of the atom-fields, and discusses the influences of atomic initial state on the AOESSG and obtains the system parameter which controls the AOESSG.展开更多
We propose a method to entangle two vibrating microsize mirrors (i.e., mechanical oscillators) in a cavity optomechanieal system. In this scheme, we discuss both the resonant and large-detuning conditions, and show ...We propose a method to entangle two vibrating microsize mirrors (i.e., mechanical oscillators) in a cavity optomechanieal system. In this scheme, we discuss both the resonant and large-detuning conditions, and show that the entanglement of two mechanical oscillators can be achieved with the assistance of a two-level atom and cavity-radiation pressure. In the resonant case, the operation time is relatively short, which is desirable to minimize the effects of decoherence. While in the large-detuning case, the cavity is only virtually excited during the interaction. Therefore, the decay of the cavity is effectively suppressed, which makes the efficient decoherence time of the cavity to be greatly prolonged. Thus, we observe that this virtual-photon process of microscopic objects may induce the entanglement of macroscopic objects. Moreover, in both cases, the generation of entanglement is deterministic and no measurements on the atom and the cavity are required. These are experimentally important. Finally, the decoherence effect and the experimental feasibility of the proposal are briefly discussed.展开更多
By the method of coherent-state orthogonalization expansion,the atomic inversion and the anti-bunching effect in a two-level atomic system interacting with binomial state field are studied under the Jaynes-Cummings mo...By the method of coherent-state orthogonalization expansion,the atomic inversion and the anti-bunching effect in a two-level atomic system interacting with binomial state field are studied under the Jaynes-Cummings model without rotating wave approximation.The influence of the parameter and the detuning on the anti-bunching effect are discussed,and the anti-bunching effect is also discussed under the conditions of strong coupling.Our studies show that the second order coherence degrees are quite different between the situations of with and without-rotating wave approximation.For the latter when the detuning increases,the duration of the bunching effect increases at the beginning and then decreases,and finally the light field displays anti-bunching effect completely.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10704031,10874235,11274148,and 10934010)
文摘We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays, with the two nearest cavities nonlocally coupled to a two-level atom. The single photon transmission amplitude is solved exactly by employing the quasi-boson picture. We investigate two different situations of local and nonlocal couplings, respectively. Comparing the dissipative case with the nondissipative one reveals that the dissipation of the system increases the middle dip and lowers the peak of the single photon transmission amplitudes, broadening the line width of the transport spectrum. It should be noted that the influence of the cavity dissipation to the single photon transport spectrum is asymmet- ric. By comparing the nonlocal coupling with the local one, one can find that the enhancement of the middle dip of single photon transmission amplitudes is mostly caused by the atom dissipation and that the reduced peak is mainly caused by the cavity dissipation, no matter whether it is a nonlocal or local coupling case. Whereas in the nonlocal coupling case, when the coupling strength gets stronger, the cavity dissipation has a greater effect on the single photon transport spectrum and the atom dissipation affection becomes weak, so it can be ignored.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304010)
文摘We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the atomic ensemble can be dramatically modified. When the collectively enhanced atom–cavity coupling is strong enough and the cavity decay rate is much smaller than the atomic damping rate, an electromagnetically induced transparency-like coherent phenomenon emerges with a dip absorption for the response of the two-level atoms in the cavity without driving, and thus is called vacuum induced transparency. We also show the slow light with very low group velocity in such an atomic ensemble.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10664002 and 10832005)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0730)the Program for International Science and Technology Cooperation Program of China (Grant No. 2009DFA02320)
文摘The effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-mode field are investigated. It is shown that the time evolution of the atomic population is mainly controlled by the coupling constants and the frequency of the low frequency field, which leads to a low frequency modulation function for the time evolution of the upper state population. The amplitude of the modulation function becomes larger as the coupling constants increase. The frequency of the modulation function is proportional to the frequency of the low frequency field, and decreases with increasing coupling constant.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No.60837004)the Key Project of Jiangxi Electric Power Company (Grant Nos.200950801 and 200950802)
文摘This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the strength of the pumping field. An equivalent incoherent pumping rate is introduced in this simplified theoretical model which exploits the dependence of this feature. The experimental observation is presented as evidence of the breaking point where the injected power is about 0.08 mW.
基金Supported by the Natural Science Foundation of Fujian Province under Grant (No.2008J0217)
文摘Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupling constants between atoms,the atomic initial states and the photon number of transition on the entanglement evolution of two coupling two-level atoms are discussed.The results obtained using the numerical method show that the entanglement of two atoms is related with coupling constants between atoms,the atomic initial states and the photon number of transition.The two-atom entanglement state will forever stay in the maximum entanglement state when the initial state is β11〉.When the initial state of two atoms is β01〉,the entanglement of two atoms displays periodic oscillation behavior.And its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.On the other hand,when the initial state is β00〉 or β10〉,the entanglement of two atoms displays quasiperiodic oscillation behavior and its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.
文摘In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Kerr medium (non-linear) and the Stark effect. The wave function of the complete system interacting with a coherent and the thermal field is calculated numerically affected by ID, Kerr (non-linear) and Stark effects. It has been seen that the Stark, Kerr, ID and the thermal environment have a significant effect during the time evolution of the quantum system. Quantum Fisher information (QFI) and QE decrease as the value of the ID parameter is increased in the thermal field without the atomic movement. It is seen that QFI and von Neumann entropy (VNE) show an opposite and periodic response in the presence of atomic motion. The non-linear Kerr medium has a more prominent and significant effect on the QE as the value of the Kerr parameter is decreased. At smaller values of the non-linear Kerr parameter, the VNE increases, however, QFI decreases, so QFI and VNE have a monotonic connection with one another. As the value of the Kerr parameter is increased, the effect of non-linear Kerr doesn’t stay critical on both QFI and QE. However, a periodic response of QE is seen because of the atomic movement which becomes modest under natural impacts. Moreover, it has been seen that QFI and QE rot soon at the smaller values of the Stark parameter. However, as the value of the Stark parameter is increased, the QFI and QE show periodic response even when the atomic movement is absent.
基金Project supported by Science Foundation of Ningxia Higher Education of China (Grant No 2005153).
文摘The coefficient of selective reflection at oblique incidence from two-level atoms confined between two dielectric walls is calculated in this paper. It is found to be related to the transient behaviour of atoms after colliding with the wall and the distribution of the field inside the vapour corresponds to L/λ, with L the thickness of the film and λ the incident wavelength. We find that the sub-Doppler structure is manifest both for normal incidence and small angle oblique incidence, It is feasible to detect the real part of selective reflection in several cases that have not been achieved before.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19874020)the Natural Science Foundation of Hunan Province of China (Grant Nos. 09JJ3012 and 10JJ9002)the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 10A032)
文摘From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.
文摘In this paper, we study the dynamics of the atomic inversion, scaled atomic Wehrl entropy and marginal atomic Wehrl density for a single two-level atom interacting with SU(1,1) quantum system. We obtain the expectation values of the atomic variables using specific initial conditions. We examine the effects of different parameters on the scaled atomic Wehrl entropy and marginal atomic Wehrl density. We observe an interesting monotonic relation between the different physical quantities for different values of the initial atomic position and detuning parameter.
基金Natural Science Foundation of Hunan Province(06JJ50118)
文摘The two-level atom is described by Pauli sign and environment is described by infinite harmonic particle thermal reservoir.We have studied the entanglement of two-level atoms which are put in the strongly thermal radiation field.The two-level atoms' reducible density rectangular array is obtained.We discuss the properties of entanglement by virtue of concurrence.It is shown that the two two-level atoms initially situated in different coherent superposition states,entanglement of atoms have obvious dissimilarity.
基金Project supported by Beijing Natural Science Foundation,China(Grant No.1164016)the National Natural Science Foundation of China(Grant Nos.11604334,61227807,and 61575108)the Tsinghua Initiative Scientific Research Program,China(Grant No.2013THZ02-3)
文摘We have deduced analytical solutions of an energy level diagram of the doubly driven/dressed atom for a two-level atom exposed to a strong near-resonant bichromatic laser field in a special case, i.e., the bichromatic field with frequencies ω1 and ω2, and Rabi frequencies ?1 and ?2, in which the first coupling field of ?1 acts on the bare atomic levels, and then the resulting singly dressed states are driven by the second coupling field of ?2, thus resulting in the doubly dressed atom.We have measured the probe absorption spectra of a doubly driven two-level atom. The system consists of 52S1/2, F= 2 and 5~2P_(3/2), F'= 3 states of ^(87)Rb atoms in a magneto-optical trap(MOT) as well as the cooling/trapping beams and an additional coupling field. As for the spectroscopic properties of the doubly driven two-level atom, theoretical analytical solutions are in general agreement with the experimental spectrum as a whole.
文摘In this paper we study the dynamics of the atomic inversion, von Neumann entropy and entropy squeezing for moving and non-moving two-level atoms interacting with a Perelomov coherent state. The final state of the system using specific initial conditions is obtained. The effects of Perelomov and detuning parameters are examined in the absence and presence of the atomic motion. Important phenomena such as the collapse and revival are shown to be very sensitive to the variation of the Perelomov parameter in the presence of detuning parameter. The results show that the Perelomov parameter is very useful in generating a high amount of entanglement due to variation of the detuning parameter.
文摘Herein, we present an approach to look for the best phenomenon to measure quantum correlation. The system of two isolated qubits each interacting with a single-mode cavity was theoretically created to study the quantum correlation. Some of the phenomena, such as the quantum discord and concurrence, were generated through such a system. The influences of initial state purity, qubit motion, and detuning parameters were discussed for the phenomena. These parameters for a specific value show that the behavior of phenomena are analogous. It is interesting to mention that some values of detuning undergo a sudden death of phenomena, and the quantum discord still captures the qubits quantum correlation. We predict that the quantum discord may be a better measure of quantum correlation than concurrence.
文摘A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic field intensity and vapor temperature, the group velocity of probe light can be controlled in an appropriate region.
文摘In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately.Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion(which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than(but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system.
文摘Proposal for the teleportation of two-atom state is presented. It is based on the simultaneous interaction of two two-level atoms with a single-mode cavity with a filed of n photons. In the proposed scheme, two pairs of EPR state are used as quantum channel to teleport an unknown two-atom state. The completed time is greatly reduced and cavity field is not required to be detected are shown to be the distinct features of the presented scheme.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12074330, 62071412, and 12074094)。
文摘We propose a scheme to simultaneously achieve nonreciprocal conventional photon blockade(NCPB) and unconventional photon blockade(NUPB) in a spinning resonator coupled to two two-level atoms. We show that, with the unequal frequency detuning of cavity and atoms from the driving laser, the quantum efect of the nonreciprocal photon blockade can be realized based on two regimes under diferent driving strengths. We confirm that, the NUPB results from the quantum destructive interference between distinct pathways when the driving laser is loaded from one side, whereas the destructive interference is broken when the system is driven from the other side. Moreover, the NCPB originates from whether the single excitation resonance condition is satisfied, corresponding to the opposite driving direction in contrast to the former. Besides, we obtain the optimal nonreciprocal results by appropriately choosing the system parameters. Interestingly, the UPB exhibits stronger robustness to thermal noises,and the nonreciprocity still exists up to a high thermal excitation. This work provides an alternative way to achieve nonreciprocal quantum devices based on the nonreciprocal photon blockade, which may help to develop information network processing.
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020)the Natural Science Foundation of Hunan Province,China (Grant No 09JJ3012)the Scientific Research Fund of the Education Department of Hunan Province of China (Grant No 07c543)
文摘From the viewpoint of quantum information, this paper proposes a concept and a definition of the atomic optimal entropy squeezing sudden generation (AOESSG) for the system of an effective two-level moving atom which entangles with the two-mode coherent fields. It also researches the relationship between the AOESSG and entanglement sudden death of the atom-fields, and discusses the influences of atomic initial state on the AOESSG and obtains the system parameter which controls the AOESSG.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 11674060, 11404061, and 11705030, the Natural Science Foundation of Fujian Province under Grant No. 2016J01018, and the Fujian Provincial Department of Education under Grant No. JZ160422.
文摘We propose a method to entangle two vibrating microsize mirrors (i.e., mechanical oscillators) in a cavity optomechanieal system. In this scheme, we discuss both the resonant and large-detuning conditions, and show that the entanglement of two mechanical oscillators can be achieved with the assistance of a two-level atom and cavity-radiation pressure. In the resonant case, the operation time is relatively short, which is desirable to minimize the effects of decoherence. While in the large-detuning case, the cavity is only virtually excited during the interaction. Therefore, the decay of the cavity is effectively suppressed, which makes the efficient decoherence time of the cavity to be greatly prolonged. Thus, we observe that this virtual-photon process of microscopic objects may induce the entanglement of macroscopic objects. Moreover, in both cases, the generation of entanglement is deterministic and no measurements on the atom and the cavity are required. These are experimentally important. Finally, the decoherence effect and the experimental feasibility of the proposal are briefly discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 1097602/A06)
文摘By the method of coherent-state orthogonalization expansion,the atomic inversion and the anti-bunching effect in a two-level atomic system interacting with binomial state field are studied under the Jaynes-Cummings model without rotating wave approximation.The influence of the parameter and the detuning on the anti-bunching effect are discussed,and the anti-bunching effect is also discussed under the conditions of strong coupling.Our studies show that the second order coherence degrees are quite different between the situations of with and without-rotating wave approximation.For the latter when the detuning increases,the duration of the bunching effect increases at the beginning and then decreases,and finally the light field displays anti-bunching effect completely.