Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps...Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.展开更多
Objective:To investigate the value of two-dimensional ultrasound speckle tracking(2D-STI)and three-dimensional ultrasound speckle tracking(3D-STI)in evaluating myocardial function in children with Kawasaki disease.Met...Objective:To investigate the value of two-dimensional ultrasound speckle tracking(2D-STI)and three-dimensional ultrasound speckle tracking(3D-STI)in evaluating myocardial function in children with Kawasaki disease.Methods 92 children with Kawasaki disease admitted to our hospital from February 2017 to February 2019 were retrospectively analyzed.50 children who underwent 3D-STI examination were taken as observation group and 42 children who underwent 2D-STI examination were taken as control group.The left ventricular systolic function index,storage time and analysis time of the image,the diameter of coronary artery,the strain difference of left ventricular basal segment,middle segment,apical segment and whole segment were observed.Results The levels of left ventricular end-diastolic volume(LVEDV),left ventricular end-systolic volume(LVESV),left ventricular myocardial mass(LVMI)in the observation group were higher than those in the control group(P<0.05),but there was no statistical difference in left ventricular ejection fraction(LVEF)between the two groups(P>0.05).The storage time and analysis time of the image in the observation group were significantly lower than those in the control group(P<0.05).The left coronary artery(LCA)and right coronary artery(RCA)in the observation group were higher than those in the control group(P<0.05).There was no statistical difference between left anterior descending(LAD)in the two groups(P>0.05).The longitudinal peak systolic strain(LS),circumferential peak systolic strain(CS)and radial peak systolic strain(RS)in the observation group were higher than those in the control group(P<0.05).The global longitudinal peak strain(GLS),global circumferential peak strain(GCS)and global radial peak strain(GRS)in the observation group were higher than those in the control group(P<0.05).LS and CS in the middle segment of the observation group were higher than those in the control group(P<0.05).Conclusions Compared with 2D-STI,3D-STI can objectively and accurately reflect the myocardial function of children with Kawasaki disease.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
Objective:The purpose of this study was to evaluate three-dimensional(3D) dehiscence of upper anterior alveolar bone during incisor retraction and intrusion in adult patients with maximum anchorage.Methods:Twenty adul...Objective:The purpose of this study was to evaluate three-dimensional(3D) dehiscence of upper anterior alveolar bone during incisor retraction and intrusion in adult patients with maximum anchorage.Methods:Twenty adult patients with bimaxillary dentoalveolar protrusion had the four first premolars extracted.Miniscrews were placed to provide maximum anchorage for upper incisor retraction and intrusion.A computed tomography(CT) scan was performed after placement of the miniscrews and treatment.The 3D reconstructions of pre-and post-CT data were used to assess the dehiscence of upper anterior alveolar bone.Results:The amounts of upper incisor retraction at the edge and apex were(7.64±1.68) and(3.91±2.10) mm,respectively,and(1.34±0.74) mm of upper central incisor intrusion.Upper alveolar bone height losses at labial alveolar ridge crest(LAC) and palatal alveolar ridge crest(PAC) were 0.543 and 2.612 mm,respectively,and the percentages were(6.49±3.54)% and(27.42±9.77)%,respectively.The shape deformations of LAC-labial cortex bending point(LBP) and PAC-palatal cortex bending point(PBP) were(15.37±5.20)° and(6.43±3.27)°,respectively.Conclusions:Thus,for adult patients with bimaxillary protrusion,mechanobiological response of anterior alveolus should be taken into account during incisor retraction and intrusion.Pursuit of maximum anchorage might lead to upper anterior alveolar bone loss.展开更多
The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair ...The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair nerve defects and in optimizing the construction of tissue-engineered nerve grafts. However, there remain major technical hurdles in obtaining, registering and interpreting 2D images, as well as in establishing 3D models. Moreover, the 3D models are plagued by poor accuracy and lack of detail and cannot completely reflect the stereoscopic microstructure inside the nerve. To explore and help resolve these key technical problems of 3D reconstruction, in the present study, we designed a novel method based on re-imaging techniques and computer image layer processing technology. A 20-cm ulnar nerve segment from the upper arm of a fresh adult cadaver was used for acetylcholinesterase(ACh E) staining. Then, 2D panoramic images were obtained before and after ACh E staining under the stereomicroscope. Using layer processing techniques in Photoshop, a space transformation method was used to fulfill automatic registration. The contours were outlined, and the 3D rendering of functional fascicular groups in the long-segment ulnar nerve was performed with Amira 4.1 software. The re-imaging technique based on layer processing in Photoshop produced an image that was detailed and accurate. The merging of images was accurate, and the whole procedure was simple and fast. The least square support vector machine was accurate, with an error rate of only 8.25%. The 3D reconstruction directly revealed changes in the fusion of different nerve functional fascicular groups. In conclusion. The technique is fast with satisfactory visual reconstruction.展开更多
BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces th...BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces the radiation dose and procedure time with improved safety.However,current 3D biliary imaging does not have good real-time fusion with intraoperative imaging,a process meant to overcome the influence of intraoperative respiratory motion and guide navigation.The present study explored the feasibility of real-time continuous image-guided ERCP.AIM To explore the feasibility of real-time continuous image-guided ERCP.METHODS We selected 23D-printed abdominal biliary tract models with different structures to simulate different patients.The ERCP environment was simulated for the biliary phantom experiment to create a navigation system,which was further tested in patients.In addition,based on the estimation of the patient’s respiratory motion,preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP.RESULTS Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm±0.13 mm and a tracking error of 0.64 mm±0.24mm.After estimating the respiratory motion,3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients,with an average fusion rate of 88%.CONCLUSION Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.展开更多
Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular...Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular matrix-cell interaction, and gene expression pattern. However, no study has been reported on the differences in lipid metabolism and distribution among 2D cancer cells, MCTS, and solid tumors. Here, we used Hep G2 liver cancer cell lines to establish these three cancer models. The variations of lipid profiles and spatial distribution among them were explored by using mass spectrometry-based lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging(MSI). The results revealed that MCTS, relative to 2D cells, had more shared lipid species with solid tumors. Furthermore,MCTS contained more comparable characteristics than 2D cells to solid tumors with respect to the relative abundance of most lipid classes and mass spectra patterns. MSI data showed that 46 of 71 lipids had similar spatial distribution between solid tumors and MCTS, while lipids in 2D cells had no specific spatial distribution. Interestingly, most of detected lipid species in sphingolipids and glycerolipids preferred locating in the necrotic region to the proliferative region of solid tumors and MCTS. Taken together, our study provides the evidence of lipid metabolism and distribution demonstrating that MCTS are a more suitable in vitro model to mimic solid tumors, which may offer insights into tumor metabolism and microenvironment.展开更多
The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC ...The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encoding was set to 80 cm/s. Results of the measurements showed that the error rate was 7.0±6.0% in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateral common carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. In addition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore, after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accurate in the determination of BFV in the carotid arteries.展开更多
Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors i...Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process.展开更多
We address the registration problem of multisource three-dimensional(3D)human-made buildings with remote sensing images and the earth’s surface in the context of virtual globes.Challenges include fast transformation ...We address the registration problem of multisource three-dimensional(3D)human-made buildings with remote sensing images and the earth’s surface in the context of virtual globes.Challenges include fast transformation of 3D coordinates with different reference systems as well as the efficient use of original model information for rigorous and accurate model registration.This paper introduces a novel fast and scalable registration approach that can establish correspondences between heterogeneous external 3D city models and images/terrain surfaces of virtual globes in an efficient and accurate manner.The approach utilizes the projected 3D feature information of 3D city models to develop robust coordinate transformation and reliable model registration methods.The proposed approach builds a solid foundation for the fusion of multisource geospatial data in a united virtual globe reference framework.We report experimental results of online registration tasks for up to over 13K buildings in an integrated 3D virtual globe platform,namely,GeoGlobe.展开更多
An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MO...An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.展开更多
Background Assessment of the left ventricular (LV) and the right ventricular (RV) volumes and their functions is important for prognostic prediction and clinical decision making. We compared the accuracy for quantify...Background Assessment of the left ventricular (LV) and the right ventricular (RV) volumes and their functions is important for prognostic prediction and clinical decision making. We compared the accuracy for quantifying the LV and the RV volumes in vitro between conventional two-dimensional echocardiography (2DE) and real-time three-dimensional echocardiography (RT3DE) Methods The volumes of 37 rubber-models (10 regularly shaped to simulate normal LV, 7 shaped to simulate LV with symmetric aneurysm, 8 shaped to simulate LV with asymmetric aneurysm, and 12 irregularly shaped to simulate normal RV) and 10 excised canine hearts were measured by RT3DE and 2DE On RT3DE 'full volume' imaging, the inner-surfaces of the rubber-models and canine LV and RV were outlined and the volumes were measured using 2-, 4-, 8- and 16-plane methods with the RT3DE analysis software On 2DE imaging, the volumes were measured by the Simpson method The LV and RV volumes measured by drained water were served as reference values, with which we compared RT3DE and 2DE data Results In rubber models mimicking normal LV and LV with symmetric aneurysms, RT3DE results were strongly correlated with reference values ( r =0 795-0 998) and there was a good correlation between 2DE estimates and reference values ( r =0 715-0 729) There were no significant differences between RT3DE estimates, 2DE results and reference values ( P >0 05) In rubber models mimicking the RV and LV with asymmetric aneurysm, RT3DE strongly correlated with reference values ( r =0 765-0 988), but 2DE weakly correlated with reference values ( r =0 518-0 592) There were no differences between RT3DE and reference values ( P >0 05), but a significant difference between 2DE and reference values occurred ( P <0 05) For excised canine hearts, there was a strong correlation between RT3DE and reference values ( r =0 728-0 914), while 2DE showed a less obvious correlation ( r =0 502-0 615) Again, there were no significant differences between RT3DE and reference values ( P >0 05), but there was a significant difference between 2DE and reference values ( P <0 05) Conclusions RT3DE can accurately quantify LV and RV volumes and provides a new tool to evaluate LV and RV function For LV and RV measurements by RT3DE, 8-plane strategy is the optimum choice for accuracy and convenience展开更多
For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al ...For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al metal matrix composites are widely researched due to its attractive properties such as low density,good wear resistance and improved strength.It is of great significance to investigate the machined surface roughness,residual stress and fatigue life for higher efficiency and precision manufacturing of this new kind material.In this study,the surface roughness including two-dimensional and three-dimensional roughness,residual stress and fatigue life of milling in-situ TiB_2/7050 Al metal matrix composites were analyzed.It was found from comparative investigation that the three-dimensional surface roughness would be more appropriate to represent the machined surface profile of milling particle reinforced metal matrix composites.The cutting temperature played a great role on the residual stress.However,the effect of increasing cutting force could slow down the transformation from compressive stress to tensile stress under 270°C.An exponential relationship between three-dimensional roughness and fatigue life was established and the main fracture mechanism was brittle fracture with observation of obvious shellfish veins,river pattern veins and wave shaped veins in fracture surface.展开更多
Objective: To explore the clinical diagnostic value of transperineal volume ultrasound combined with two-dimensional high-frequency ultrasound for anal fistula. Methods: A total of 52 patients with anal fistula admitt...Objective: To explore the clinical diagnostic value of transperineal volume ultrasound combined with two-dimensional high-frequency ultrasound for anal fistula. Methods: A total of 52 patients with anal fistula admitted to the Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine from December 2017 to July 2018 were selected. They were all undergoing transperineal 3D volume ultrasound combined with 2D high-frequency ultrasound examination, and the diagnosis results were analyzed. The results of ultrasonography and surgical pathology were compared. Results: Among 52 patients, 3D volume ultrasound combined with 2D high-frequency ultrasound were used to diagnose 32 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 5 cases of supra-sphincter type, and 1 case of extra-sphincter type. T supervisor classification accuracy rate is 90%. The detection rate of branch pipes was 92%, and the compliance rate of internal fistula was 95%. Two-dimensional high-frequency ultrasound was used to diagnose 34 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 4 cases of supra-sphincter type, and 0 cases of extra-sphincter type. The detection rate of branch canals was 42%, and the accuracy of type classification was 90%. The coincidence rate was 95%. There was a statistically significant difference in the detection rate of the anal fistula branch and the coincidence rate of the internal fistula between the two methods (both P Conclusion: 1) The overall coincidence rate of three-dimensional volumetric ultrasound combined with two-dimensional high-frequency ultrasound in the diagnosis of anal fistula is high;2) Three-dimensional volumetric ultrasound technology has great application prospects in infants and anal fistulas.展开更多
Vertical three-dimensional(3D)integration is a highly attractive strategy to integrate a large number of transistor devices per unit area.This approach has emerged to accommodate the higher demand of data processing c...Vertical three-dimensional(3D)integration is a highly attractive strategy to integrate a large number of transistor devices per unit area.This approach has emerged to accommodate the higher demand of data processing capability and to circumvent the scaling limitation.A huge number of research efforts have been attempted to demonstrate vertically stacked electronics in the last two decades.In this review,we revisit materials and devices for the vertically integrated electronics with an emphasis on the emerging semiconductor materials that can be processable by bottom-up fabrication methods,which are suitable for future flexible and wearable electronics.The vertically stacked integrated circuits are reviewed based on the semiconductor materials:organic semiconductors,carbon nanotubes,metal oxide semiconductors,and atomically thin two-dimensional materials including transi-tion metal dichalcogenides.The features,device performance,and fabrication methods for 3D integration of the transistor based on each semiconductor are discussed.Moreover,we highlight recent advances that can be important milestones in the vertically integrated elec-tronics including advanced integrated circuits,sensors,and display systems.There are remaining challenges to overcome;however,we believe that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.展开更多
In the past decade, researchers in the fields of energy production have concentrated on the improvement of new energy storage devices. Lithium-ion batteries(LIBs) and faradaic supercapacitors(FSs) have attracted speci...In the past decade, researchers in the fields of energy production have concentrated on the improvement of new energy storage devices. Lithium-ion batteries(LIBs) and faradaic supercapacitors(FSs) have attracted special attention as a result of the rapid development of new electrode nanomaterials, especially hybrid nanomaterials, which can meet the increasingly higher requirements for future energy, such as the capability to deliver high-power performance and an extremely long life cycle. In these hybrid nanostructures, a series of synergistic effects and unique properties arising from the combination of individual components are a major factor leading to improved charge/discharge capability, energy density, and system lifetime. This paper describes the most recent progress in the growth of hybrid electrode materials for LIBs and FSs systems, focusing on the combination of zero-dimensional(0 D), one-dimensional(1 D), two-dimensional(2 D), and three-dimensional(3 D) nanomaterials, respectively.展开更多
In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-...In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.展开更多
In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are anal...In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are analytically investigated for exact solutions using the modified extended tanh-expansion based method. A variety of new and important soliton solutions are obtained including the dark soliton solution, singular soliton solution, combined dark-singular soliton solution and many other trigonometric function solutions. The used method is implemented on the Mathematica software for the computations as well as the graphical illustrations.展开更多
We proposed a three-dimensional (3D) image authentication method using binarized phase images in double random phase integral imaging (Ini). Two-dimensional (2D) element images obtained from Ini are encoded using a do...We proposed a three-dimensional (3D) image authentication method using binarized phase images in double random phase integral imaging (Ini). Two-dimensional (2D) element images obtained from Ini are encoded using a double random phase encryption (DRPE) algorithm. Only part of the phase information is used in the proposed method rather than using all of the amplitude and phase information, which can make the final data sparse and beneficial to data compression, storage, and transmission. Experimental results verified the method and successfully proved the developed 3D authentication process using a nonlinear cross correlation method.展开更多
In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Sch...In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Schr¨odinger equations. Many new families of exact soliton solutions of five complex nonlinear Schr¨odinger equations are successfully obtained.展开更多
基金the China Scholarship Council under Grant No.201406070059.
文摘Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.
基金Shaanxi key research and development plan(No.2019SF-211).
文摘Objective:To investigate the value of two-dimensional ultrasound speckle tracking(2D-STI)and three-dimensional ultrasound speckle tracking(3D-STI)in evaluating myocardial function in children with Kawasaki disease.Methods 92 children with Kawasaki disease admitted to our hospital from February 2017 to February 2019 were retrospectively analyzed.50 children who underwent 3D-STI examination were taken as observation group and 42 children who underwent 2D-STI examination were taken as control group.The left ventricular systolic function index,storage time and analysis time of the image,the diameter of coronary artery,the strain difference of left ventricular basal segment,middle segment,apical segment and whole segment were observed.Results The levels of left ventricular end-diastolic volume(LVEDV),left ventricular end-systolic volume(LVESV),left ventricular myocardial mass(LVMI)in the observation group were higher than those in the control group(P<0.05),but there was no statistical difference in left ventricular ejection fraction(LVEF)between the two groups(P>0.05).The storage time and analysis time of the image in the observation group were significantly lower than those in the control group(P<0.05).The left coronary artery(LCA)and right coronary artery(RCA)in the observation group were higher than those in the control group(P<0.05).There was no statistical difference between left anterior descending(LAD)in the two groups(P>0.05).The longitudinal peak systolic strain(LS),circumferential peak systolic strain(CS)and radial peak systolic strain(RS)in the observation group were higher than those in the control group(P<0.05).The global longitudinal peak strain(GLS),global circumferential peak strain(GCS)and global radial peak strain(GRS)in the observation group were higher than those in the control group(P<0.05).LS and CS in the middle segment of the observation group were higher than those in the control group(P<0.05).Conclusions Compared with 2D-STI,3D-STI can objectively and accurately reflect the myocardial function of children with Kawasaki disease.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.
基金Project supported by the Shandong Science and Technology Planning Project Contract Research (Nos. 2008GG30002019 and 2008GG 30001001) of Chinathe Shandong University Dental School Project Research (Nos. P2009009,P2009010,and P2010010),China
文摘Objective:The purpose of this study was to evaluate three-dimensional(3D) dehiscence of upper anterior alveolar bone during incisor retraction and intrusion in adult patients with maximum anchorage.Methods:Twenty adult patients with bimaxillary dentoalveolar protrusion had the four first premolars extracted.Miniscrews were placed to provide maximum anchorage for upper incisor retraction and intrusion.A computed tomography(CT) scan was performed after placement of the miniscrews and treatment.The 3D reconstructions of pre-and post-CT data were used to assess the dehiscence of upper anterior alveolar bone.Results:The amounts of upper incisor retraction at the edge and apex were(7.64±1.68) and(3.91±2.10) mm,respectively,and(1.34±0.74) mm of upper central incisor intrusion.Upper alveolar bone height losses at labial alveolar ridge crest(LAC) and palatal alveolar ridge crest(PAC) were 0.543 and 2.612 mm,respectively,and the percentages were(6.49±3.54)% and(27.42±9.77)%,respectively.The shape deformations of LAC-labial cortex bending point(LBP) and PAC-palatal cortex bending point(PBP) were(15.37±5.20)° and(6.43±3.27)°,respectively.Conclusions:Thus,for adult patients with bimaxillary protrusion,mechanobiological response of anterior alveolus should be taken into account during incisor retraction and intrusion.Pursuit of maximum anchorage might lead to upper anterior alveolar bone loss.
基金supported by the National Natural Science Foundation of China,No.30571913a grant from the Science and Technology Project of Guangdong Province of China,No.2013B010404019+1 种基金the Natural Science Foundation of Guangdong Province of China,No.9151008901000006the Medical Scientific Research Foundation of Guangdong Province of China,No.A2009173
文摘The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair nerve defects and in optimizing the construction of tissue-engineered nerve grafts. However, there remain major technical hurdles in obtaining, registering and interpreting 2D images, as well as in establishing 3D models. Moreover, the 3D models are plagued by poor accuracy and lack of detail and cannot completely reflect the stereoscopic microstructure inside the nerve. To explore and help resolve these key technical problems of 3D reconstruction, in the present study, we designed a novel method based on re-imaging techniques and computer image layer processing technology. A 20-cm ulnar nerve segment from the upper arm of a fresh adult cadaver was used for acetylcholinesterase(ACh E) staining. Then, 2D panoramic images were obtained before and after ACh E staining under the stereomicroscope. Using layer processing techniques in Photoshop, a space transformation method was used to fulfill automatic registration. The contours were outlined, and the 3D rendering of functional fascicular groups in the long-segment ulnar nerve was performed with Amira 4.1 software. The re-imaging technique based on layer processing in Photoshop produced an image that was detailed and accurate. The merging of images was accurate, and the whole procedure was simple and fast. The least square support vector machine was accurate, with an error rate of only 8.25%. The 3D reconstruction directly revealed changes in the fusion of different nerve functional fascicular groups. In conclusion. The technique is fast with satisfactory visual reconstruction.
文摘BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces the radiation dose and procedure time with improved safety.However,current 3D biliary imaging does not have good real-time fusion with intraoperative imaging,a process meant to overcome the influence of intraoperative respiratory motion and guide navigation.The present study explored the feasibility of real-time continuous image-guided ERCP.AIM To explore the feasibility of real-time continuous image-guided ERCP.METHODS We selected 23D-printed abdominal biliary tract models with different structures to simulate different patients.The ERCP environment was simulated for the biliary phantom experiment to create a navigation system,which was further tested in patients.In addition,based on the estimation of the patient’s respiratory motion,preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP.RESULTS Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm±0.13 mm and a tracking error of 0.64 mm±0.24mm.After estimating the respiratory motion,3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients,with an average fusion rate of 88%.CONCLUSION Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.
基金supported by National Natural Science Foundation of China (Nos. 22036001, 22106130 and 91843301)Research Grant Council (Nos. 463612 and 14104314) of Hong Kong。
文摘Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular matrix-cell interaction, and gene expression pattern. However, no study has been reported on the differences in lipid metabolism and distribution among 2D cancer cells, MCTS, and solid tumors. Here, we used Hep G2 liver cancer cell lines to establish these three cancer models. The variations of lipid profiles and spatial distribution among them were explored by using mass spectrometry-based lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging(MSI). The results revealed that MCTS, relative to 2D cells, had more shared lipid species with solid tumors. Furthermore,MCTS contained more comparable characteristics than 2D cells to solid tumors with respect to the relative abundance of most lipid classes and mass spectra patterns. MSI data showed that 46 of 71 lipids had similar spatial distribution between solid tumors and MCTS, while lipids in 2D cells had no specific spatial distribution. Interestingly, most of detected lipid species in sphingolipids and glycerolipids preferred locating in the necrotic region to the proliferative region of solid tumors and MCTS. Taken together, our study provides the evidence of lipid metabolism and distribution demonstrating that MCTS are a more suitable in vitro model to mimic solid tumors, which may offer insights into tumor metabolism and microenvironment.
基金the Medical Program of Scientific & Technical Foundation in Xiamen in 2008, No. 3502Z20084028
文摘The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encoding was set to 80 cm/s. Results of the measurements showed that the error rate was 7.0±6.0% in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateral common carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. In addition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore, after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accurate in the determination of BFV in the carotid arteries.
基金Project(52409132) supported by the National Natural Science Foundation of ChinaProject(ZR2024QE018) supported by the Natural Science Foundation of Shandong Province,China+2 种基金Project(BK20240431) supported by Basic Research Program of Jiangsu,ChinaProject(SNKJ2023A07-R14) supported by the Major Key Technical Research Projects of Shandong Energy Group,ChinaProject(2024M751813) supported by China Postdoctoral Science Foundation。
文摘Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process.
基金This research was jointly supported by National Basic Research Program of China[No.2012CB719906]National Natural Science Foundation of China[No.41171314],[41023001],[41271400].
文摘We address the registration problem of multisource three-dimensional(3D)human-made buildings with remote sensing images and the earth’s surface in the context of virtual globes.Challenges include fast transformation of 3D coordinates with different reference systems as well as the efficient use of original model information for rigorous and accurate model registration.This paper introduces a novel fast and scalable registration approach that can establish correspondences between heterogeneous external 3D city models and images/terrain surfaces of virtual globes in an efficient and accurate manner.The approach utilizes the projected 3D feature information of 3D city models to develop robust coordinate transformation and reliable model registration methods.The proposed approach builds a solid foundation for the fusion of multisource geospatial data in a united virtual globe reference framework.We report experimental results of online registration tasks for up to over 13K buildings in an integrated 3D virtual globe platform,namely,GeoGlobe.
基金supported by the National Aeronautics and Space Administration under grant number 80NSSC20K0352.
文摘An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.
文摘Background Assessment of the left ventricular (LV) and the right ventricular (RV) volumes and their functions is important for prognostic prediction and clinical decision making. We compared the accuracy for quantifying the LV and the RV volumes in vitro between conventional two-dimensional echocardiography (2DE) and real-time three-dimensional echocardiography (RT3DE) Methods The volumes of 37 rubber-models (10 regularly shaped to simulate normal LV, 7 shaped to simulate LV with symmetric aneurysm, 8 shaped to simulate LV with asymmetric aneurysm, and 12 irregularly shaped to simulate normal RV) and 10 excised canine hearts were measured by RT3DE and 2DE On RT3DE 'full volume' imaging, the inner-surfaces of the rubber-models and canine LV and RV were outlined and the volumes were measured using 2-, 4-, 8- and 16-plane methods with the RT3DE analysis software On 2DE imaging, the volumes were measured by the Simpson method The LV and RV volumes measured by drained water were served as reference values, with which we compared RT3DE and 2DE data Results In rubber models mimicking normal LV and LV with symmetric aneurysms, RT3DE results were strongly correlated with reference values ( r =0 795-0 998) and there was a good correlation between 2DE estimates and reference values ( r =0 715-0 729) There were no significant differences between RT3DE estimates, 2DE results and reference values ( P >0 05) In rubber models mimicking the RV and LV with asymmetric aneurysm, RT3DE strongly correlated with reference values ( r =0 765-0 988), but 2DE weakly correlated with reference values ( r =0 518-0 592) There were no differences between RT3DE and reference values ( P >0 05), but a significant difference between 2DE and reference values occurred ( P <0 05) For excised canine hearts, there was a strong correlation between RT3DE and reference values ( r =0 728-0 914), while 2DE showed a less obvious correlation ( r =0 502-0 615) Again, there were no significant differences between RT3DE and reference values ( P >0 05), but there was a significant difference between 2DE and reference values ( P <0 05) Conclusions RT3DE can accurately quantify LV and RV volumes and provides a new tool to evaluate LV and RV function For LV and RV measurements by RT3DE, 8-plane strategy is the optimum choice for accuracy and convenience
基金National Natural Science Foundation of China(No.51775443)National Science and Technology Major Project of China(No.2017-VII-00150111)。
文摘For higher efficiency and precision manufacturing,more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life.At present,the in-situ TiB_2/7050 Al metal matrix composites are widely researched due to its attractive properties such as low density,good wear resistance and improved strength.It is of great significance to investigate the machined surface roughness,residual stress and fatigue life for higher efficiency and precision manufacturing of this new kind material.In this study,the surface roughness including two-dimensional and three-dimensional roughness,residual stress and fatigue life of milling in-situ TiB_2/7050 Al metal matrix composites were analyzed.It was found from comparative investigation that the three-dimensional surface roughness would be more appropriate to represent the machined surface profile of milling particle reinforced metal matrix composites.The cutting temperature played a great role on the residual stress.However,the effect of increasing cutting force could slow down the transformation from compressive stress to tensile stress under 270°C.An exponential relationship between three-dimensional roughness and fatigue life was established and the main fracture mechanism was brittle fracture with observation of obvious shellfish veins,river pattern veins and wave shaped veins in fracture surface.
文摘Objective: To explore the clinical diagnostic value of transperineal volume ultrasound combined with two-dimensional high-frequency ultrasound for anal fistula. Methods: A total of 52 patients with anal fistula admitted to the Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine from December 2017 to July 2018 were selected. They were all undergoing transperineal 3D volume ultrasound combined with 2D high-frequency ultrasound examination, and the diagnosis results were analyzed. The results of ultrasonography and surgical pathology were compared. Results: Among 52 patients, 3D volume ultrasound combined with 2D high-frequency ultrasound were used to diagnose 32 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 5 cases of supra-sphincter type, and 1 case of extra-sphincter type. T supervisor classification accuracy rate is 90%. The detection rate of branch pipes was 92%, and the compliance rate of internal fistula was 95%. Two-dimensional high-frequency ultrasound was used to diagnose 34 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 4 cases of supra-sphincter type, and 0 cases of extra-sphincter type. The detection rate of branch canals was 42%, and the accuracy of type classification was 90%. The coincidence rate was 95%. There was a statistically significant difference in the detection rate of the anal fistula branch and the coincidence rate of the internal fistula between the two methods (both P Conclusion: 1) The overall coincidence rate of three-dimensional volumetric ultrasound combined with two-dimensional high-frequency ultrasound in the diagnosis of anal fistula is high;2) Three-dimensional volumetric ultrasound technology has great application prospects in infants and anal fistulas.
基金This work was supported by the National Research Foundation of Korea(NRF)grants by the Korean Government(MSIT)(NRF-2021R1A6A3A14038580,NRF-2020R1A2C1101647)This work was supported by the Technology Innovation Program(00144300,Interface Technology of 3D Stacked Heterogeneous System for SCM-based Process-in-Memory)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Vertical three-dimensional(3D)integration is a highly attractive strategy to integrate a large number of transistor devices per unit area.This approach has emerged to accommodate the higher demand of data processing capability and to circumvent the scaling limitation.A huge number of research efforts have been attempted to demonstrate vertically stacked electronics in the last two decades.In this review,we revisit materials and devices for the vertically integrated electronics with an emphasis on the emerging semiconductor materials that can be processable by bottom-up fabrication methods,which are suitable for future flexible and wearable electronics.The vertically stacked integrated circuits are reviewed based on the semiconductor materials:organic semiconductors,carbon nanotubes,metal oxide semiconductors,and atomically thin two-dimensional materials including transi-tion metal dichalcogenides.The features,device performance,and fabrication methods for 3D integration of the transistor based on each semiconductor are discussed.Moreover,we highlight recent advances that can be important milestones in the vertically integrated elec-tronics including advanced integrated circuits,sensors,and display systems.There are remaining challenges to overcome;however,we believe that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(NRF-2017R1D1A1A09000642)by a grant from the R&D Program of the Korea Railroad Research Institute (KRRI), Republic of Korea
文摘In the past decade, researchers in the fields of energy production have concentrated on the improvement of new energy storage devices. Lithium-ion batteries(LIBs) and faradaic supercapacitors(FSs) have attracted special attention as a result of the rapid development of new electrode nanomaterials, especially hybrid nanomaterials, which can meet the increasingly higher requirements for future energy, such as the capability to deliver high-power performance and an extremely long life cycle. In these hybrid nanostructures, a series of synergistic effects and unique properties arising from the combination of individual components are a major factor leading to improved charge/discharge capability, energy density, and system lifetime. This paper describes the most recent progress in the growth of hybrid electrode materials for LIBs and FSs systems, focusing on the combination of zero-dimensional(0 D), one-dimensional(1 D), two-dimensional(2 D), and three-dimensional(3 D) nanomaterials, respectively.
基金Project(51608541)supported by the National Natural Science Foundation of ChinaProject(2015M580702)supported by the Postdoctoral Science Foundation of ChinaProject(201508)supported by the Postdoctoral Science Foundation of Central South University,China
文摘In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.
文摘In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are analytically investigated for exact solutions using the modified extended tanh-expansion based method. A variety of new and important soliton solutions are obtained including the dark soliton solution, singular soliton solution, combined dark-singular soliton solution and many other trigonometric function solutions. The used method is implemented on the Mathematica software for the computations as well as the graphical illustrations.
基金supported by the National Key Research and Development Program of China(No.2018YFB1005002)the National Natural Science Foundation of China(No.61727808)the National Research Foundation of Singapore(No.NRF-CRP11-2012-01)
文摘We proposed a three-dimensional (3D) image authentication method using binarized phase images in double random phase integral imaging (Ini). Two-dimensional (2D) element images obtained from Ini are encoded using a double random phase encryption (DRPE) algorithm. Only part of the phase information is used in the proposed method rather than using all of the amplitude and phase information, which can make the final data sparse and beneficial to data compression, storage, and transmission. Experimental results verified the method and successfully proved the developed 3D authentication process using a nonlinear cross correlation method.
文摘In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Schr¨odinger equations. Many new families of exact soliton solutions of five complex nonlinear Schr¨odinger equations are successfully obtained.