How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will...How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.展开更多
Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-...Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shroude...Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles.展开更多
Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced f...Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.展开更多
River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of...River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of the embankments and efficiently recognize such potential damages,this study takes SAR(Synthetic Aperture Radar)derived deformation as an indicator of the embankment instability,and customizes a multi-temporal InSAR(Interferometric SAR)approach-small baseline subset.Specifically,during InSAR processing,we apply a two-step amplitude difference dispersion threshold method to extract InSAR measurement points,thus improving the point density within the embankment.We applied this method to the Kangshan Embankment(KE)using 147 Sentinel-1 acquired between 2017 and 2021.We categorized KE into Waterside Slope(WS),Embankment Top(ET),and Landside Slope(LS)using InSAR height estimation.Given the dominance of downslope movement,we developed a projection matrix from InSAR-derived deformation in the satellite line-of-sight direction onto WS and LS.The study shows that KE was generally stable during the five-year period,while WS,ET,and LS experienced different deformation processes.For instance,seasonal variation was observed from the deformation time series,especially between every April and November.We applied the principal component analysis to the time-series displacement and analyzed the results in conjunction with the rainfall data of Kangshan Township.It showed that deformation due to rainfall equals 80.93%,81.30%,and 82.46%of the total deformation for WS,ET,and LS,respectively,indicating that rainfall is one of the environmental driving factors affecting the deformations.We conclude that the proposed methodology is suited for systematic embankment monitoring and identifies major driving forces.展开更多
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna...Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer...Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m...This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
In this work,fow behavior and dynamic recrystallization(DRX)mechanism of a low carbon martensitic stainless bearing steel,CSS-42L,were investigated using a thermomechanical simulator under the temperature and strain r...In this work,fow behavior and dynamic recrystallization(DRX)mechanism of a low carbon martensitic stainless bearing steel,CSS-42L,were investigated using a thermomechanical simulator under the temperature and strain rate ranges of 900 to 1100℃ and 0.1 to 20 s^(−1),respectively.The Arrhenius-type constitutive equation was established based on the fow stress curves.Moreover,the peak stress decreased with the increase in deformation temperature and the decrease in strain rate.There were two DRX mechanisms during hot deformation of the current studied steel,the main one being discontinuous dynamic recrystallization mechanism,acting through grain boundary bulging and migration,and the auxiliary one being continuous dynamic recrystallization mechanism,working through the rotation of sub-grains.On the basis of microstructural characterizations,power dissipation maps and fow instability maps,the optimized hot deformation parameters for CSS-42L bearing steel were determined as 1050℃/0.1 s^(−1) and 1100℃/1 s^(−1).展开更多
The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot co...The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).展开更多
The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 ...The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 s^(-1),under 70% deformation conditions.The true stress-true strain curves were analyzed and a constitutive equation was established at a strain of 0.5.Based on the dynamic material model proposed by Prasad,processing maps were developed under different strain conditions.Microstructure of compressed sample was observed by electron backscatter diffraction.The results reveal that the electrolytic copper demonstrates high sensitivity to deformation temperature and strain rate during high-temperature plastic deformation.The flow stress decreases gradually with raising the temperature and reducing the strain rate.According to the established processing map,the optimal processing conditions are determined as follows:deformation temperatures of 600-650℃ and strain rates of 5-10 s^(-1).Discontinuous dynamic recrystallization of electrolytic copper occurs during high-temperature plastic deformation,and the grains are significantly refined at low temperature and high strain rate conditions.展开更多
The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at c...The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at current density of 60 A/mm^(2) and strain rate of 0.1 s^(−1),the ultimate tensile stress shows a significant decrease from approximately 3000 MPa to 1900 MPa with reduction ratio of about 36.7%.However,as current density increases,elongation decreases due to intermediate temperature embrittlement.This is because the current induces Joule effect,which then leads to stress concentration and more defect formation.Moreover,the flow stress is decreased with the increase in strain rate at constant current density.展开更多
The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the init...The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the initial stage of high-temperature creep,two sets of dislocations with different Burgers vectors move and meet inγmatrix channels,and react to form a quadrilateral dislocation network.Andγ′phases with raft-like microstructure are generated after the formation of dislocation networks.As creep progresses,the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks.During steady stage of creep,the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-likeγ′phases.At the later stage of creep,the raft-likeγ′phases are sheared by dislocations at the breakage of dislocation networks,and then alternate slip occurs,which distorts and breaks the raft-likeγ′/γphases,resulting in the accumulation of micropores at the raft-likeγ′/γinterfaces and the formation of microcracks.As creep continues,the microcracks continue to expand until creep fracture occurs,which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature.展开更多
Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the wes...Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the western coasts of Africa and the eastern shore of South America and the morphotectonic geometry of the rift basins of South America, conditioning the morphostructure of the Andean chain and the current geoforms of the foreland.展开更多
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch...Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.展开更多
The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion a...The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.展开更多
基金supported by the National Key Research and Development Project(No.2023YFA1600082)the National Natural Science Foundation of China(Nos.U2141207,52001083,52171111)+3 种基金Natural Science Foundation of Heilongjiang(No.YQ2023E026)the Fundamental Research Funds for the Central Universities(No.3072022JIP1002)Key Laboratory Found of the Ministry of Industry and Information Technology(No.GXB202201)Youth Talent Project of China National Nuclear Corporation(No.CNNC2021YTEP-HEU01).
文摘How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.
基金financially supported by the National Key Re-search and Development Program of China(No.2021YFB3702604)the National Natural Science Foundation of China(No.52174377)+1 种基金the Chongqing Natural Science Foundation Project(No.CSTB2023NSCQ-MSX0824)This work was also supported by the Shaanxi Materials Analysis&Research Center and the Analytical&Testing Center of NPU.
文摘Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金supported by the National Natural Science Foundation of China(52375443)the Innovative Research Group Project of the National Natural Science Foundation of China(51921003).
文摘Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles.
基金supported by the Open Fund of State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE201806)the National Natural Science Foundation of China (Grant No.42177155).
文摘Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金State Scholarship Fund from the Chinese Scholarship Council(No.202206710096)Project of China Railway Corporation(No.2021-key-14,2021-major-08)The Joint Planning of Technology and Water Conservancy of Jiangxi Province(No.2022KSG01009).
文摘River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of the embankments and efficiently recognize such potential damages,this study takes SAR(Synthetic Aperture Radar)derived deformation as an indicator of the embankment instability,and customizes a multi-temporal InSAR(Interferometric SAR)approach-small baseline subset.Specifically,during InSAR processing,we apply a two-step amplitude difference dispersion threshold method to extract InSAR measurement points,thus improving the point density within the embankment.We applied this method to the Kangshan Embankment(KE)using 147 Sentinel-1 acquired between 2017 and 2021.We categorized KE into Waterside Slope(WS),Embankment Top(ET),and Landside Slope(LS)using InSAR height estimation.Given the dominance of downslope movement,we developed a projection matrix from InSAR-derived deformation in the satellite line-of-sight direction onto WS and LS.The study shows that KE was generally stable during the five-year period,while WS,ET,and LS experienced different deformation processes.For instance,seasonal variation was observed from the deformation time series,especially between every April and November.We applied the principal component analysis to the time-series displacement and analyzed the results in conjunction with the rainfall data of Kangshan Township.It showed that deformation due to rainfall equals 80.93%,81.30%,and 82.46%of the total deformation for WS,ET,and LS,respectively,indicating that rainfall is one of the environmental driving factors affecting the deformations.We conclude that the proposed methodology is suited for systematic embankment monitoring and identifies major driving forces.
基金Financial supports from the National Natural Science Foundation of China(Nos.52171116,U22A20109,52334010 and T2325013)are greatly acknowledgedPartial financial support came from The Program for the Central University Youth Innovation Team,and the Fundamental Research Funds for the Central Universities,JLU.
文摘Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.
基金supported by the China Scholarship Council(CSC,Grant No.202108050072)JSPS KAKENHI(Grant No.JP19KK0121)。
文摘Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the Shihezi University High-Level Talents Research Startup Project(Project No.RCZK202521)the National Natural Science Foundation of China(Grant Nos.12271066,11871121,12171405)+1 种基金the Chongqing Natural Science Foundation Joint Fund for Innovation and Development Project(Project No.CSTB2024NSCQLZX0085)the Chongqing Normal University Foundation(Grant No.23XLB018).
文摘This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金fnancially supported by the Scientifc Research Project of the Department of Education in Hunan Prov ince,China(Grant No.23B0533).
文摘In this work,fow behavior and dynamic recrystallization(DRX)mechanism of a low carbon martensitic stainless bearing steel,CSS-42L,were investigated using a thermomechanical simulator under the temperature and strain rate ranges of 900 to 1100℃ and 0.1 to 20 s^(−1),respectively.The Arrhenius-type constitutive equation was established based on the fow stress curves.Moreover,the peak stress decreased with the increase in deformation temperature and the decrease in strain rate.There were two DRX mechanisms during hot deformation of the current studied steel,the main one being discontinuous dynamic recrystallization mechanism,acting through grain boundary bulging and migration,and the auxiliary one being continuous dynamic recrystallization mechanism,working through the rotation of sub-grains.On the basis of microstructural characterizations,power dissipation maps and fow instability maps,the optimized hot deformation parameters for CSS-42L bearing steel were determined as 1050℃/0.1 s^(−1) and 1100℃/1 s^(−1).
文摘The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).
基金Gansu Province Higher Education Institutions Industrial Support Program Project(2022CYZC-19)Gansu Provincial Science and Technology Major Project(22ZD6GA008)。
文摘The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 s^(-1),under 70% deformation conditions.The true stress-true strain curves were analyzed and a constitutive equation was established at a strain of 0.5.Based on the dynamic material model proposed by Prasad,processing maps were developed under different strain conditions.Microstructure of compressed sample was observed by electron backscatter diffraction.The results reveal that the electrolytic copper demonstrates high sensitivity to deformation temperature and strain rate during high-temperature plastic deformation.The flow stress decreases gradually with raising the temperature and reducing the strain rate.According to the established processing map,the optimal processing conditions are determined as follows:deformation temperatures of 600-650℃ and strain rates of 5-10 s^(-1).Discontinuous dynamic recrystallization of electrolytic copper occurs during high-temperature plastic deformation,and the grains are significantly refined at low temperature and high strain rate conditions.
基金National Natural Science Foundation of China(52305349)Heilongjiang Touyan Team(HITTY-20190036)+2 种基金Heilongjiang Provincial Natural Science Foundation of China(LH2023E033)CGN-HIT Advanced Nuclear and New Energy Research Institute(CGN-HIT202305)Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0518)。
文摘The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at current density of 60 A/mm^(2) and strain rate of 0.1 s^(−1),the ultimate tensile stress shows a significant decrease from approximately 3000 MPa to 1900 MPa with reduction ratio of about 36.7%.However,as current density increases,elongation decreases due to intermediate temperature embrittlement.This is because the current induces Joule effect,which then leads to stress concentration and more defect formation.Moreover,the flow stress is decreased with the increase in strain rate at constant current density.
基金Guizhou Province Science and Technology Plan Project(QKHJC-ZK[2024]yiban604)Guizhou Province Science and Technology Plan Project(CXTD[2021]008)+4 种基金Bijie City Science and Technology Project(BKLH[2023]9)Technology Project of Bijie City(BKLH[2023]36)Natural Science Research Project of Guizhou Higher Education Institutions of China(QJJ[2023]047)Science and Technology Project of Guizhou Department of Transportation(2022-121-011)Sanmenxia City Science and Technology Bureau Science and Technology Research Project(2022002005)。
文摘The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the initial stage of high-temperature creep,two sets of dislocations with different Burgers vectors move and meet inγmatrix channels,and react to form a quadrilateral dislocation network.Andγ′phases with raft-like microstructure are generated after the formation of dislocation networks.As creep progresses,the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks.During steady stage of creep,the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-likeγ′phases.At the later stage of creep,the raft-likeγ′phases are sheared by dislocations at the breakage of dislocation networks,and then alternate slip occurs,which distorts and breaks the raft-likeγ′/γphases,resulting in the accumulation of micropores at the raft-likeγ′/γinterfaces and the formation of microcracks.As creep continues,the microcracks continue to expand until creep fracture occurs,which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature.
文摘Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the western coasts of Africa and the eastern shore of South America and the morphotectonic geometry of the rift basins of South America, conditioning the morphostructure of the Andean chain and the current geoforms of the foreland.
基金supported by Beijing Natural Science Foundation(Nos.2232037 and 2242035)the National Natural Science Foundation of China(Nos.22005012,22105012 and 51803183)+1 种基金Chunhui Plan Cooperative Project of Ministry of Education(No.202201298)the China Postdoctoral Science Foundation Funded Project(No.2023M733520).
文摘Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.
基金Shenzhen Science and Technology Program(KJZD20230923113900001)Project of Industry and Information Technology Bureau of Shenzhen Municipality(201806071403422960)。
文摘The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.