To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates ...To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates the segmentation results of three densely connected 2 D convolutional neural networks(2 D-CNNs).In order to combine the lowlevel features and high-level features,we added densely connected blocks in the network structure design so that the low-level features will not be missed as the network layer increases during the learning process.Further,in order to resolve the problems of the blurred boundary of the glioma edema area,we superimposed and fused the T2-weighted fluid-attenuated inversion recovery(FLAIR)modal image and the T2-weighted(T2)modal image to enhance the edema section.For the loss function of network training,we improved the cross-entropy loss function to effectively avoid network over-fitting.On the Multimodal Brain Tumor Image Segmentation Challenge(BraTS)datasets,our method achieves dice similarity coefficient values of 0.84,0.82,and 0.83 on the BraTS2018 training;0.82,0.85,and 0.83 on the BraTS2018 validation;and 0.81,0.78,and 0.83 on the BraTS2013 testing in terms of whole tumors,tumor cores,and enhancing cores,respectively.Experimental results showed that the proposed method achieved promising accuracy and fast processing,demonstrating good potential for clinical medicine.展开更多
Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by...Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by 2040,implying that one out of every ten persons will be diabetic.There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’lives.Due to its rapid development,deep learning(DL)was used to predict numerous diseases.However,DLmethods still suffer from their limited prediction performance due to the hyperparameters selection and parameters optimization.Therefore,the selection of hyper-parameters is critical in improving classification performance.This study presents Convolutional Neural Network(CNN)that has achieved remarkable results in many medical domains where the Bayesian optimization algorithm(BOA)has been employed for hyperparameters selection and parameters optimization.Two issues have been investigated and solved during the experiment to enhance the results.The first is the dataset class imbalance,which is solved using Synthetic Minority Oversampling Technique(SMOTE)technique.The second issue is the model’s poor performance,which has been solved using the Bayesian optimization algorithm.The findings indicate that the Bayesian based-CNN model superbases all the state-of-the-art models in the literature with an accuracy of 89.36%,F1-score of 0.88.6,andMatthews Correlation Coefficient(MCC)of 0.88.6.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
In recent years,deep convolution neural network has exhibited excellent performance in computer vision and has a far-reaching impact.Traditional plant taxonomic identification requires high expertise,which is time-con...In recent years,deep convolution neural network has exhibited excellent performance in computer vision and has a far-reaching impact.Traditional plant taxonomic identification requires high expertise,which is time-consuming.Most nature reserves have problems such as incomplete species surveys,inaccurate taxonomic identification,and untimely updating of status data.Simple and accurate recognition of plant images can be achieved by applying convolutional neural network technology to explore the best network model.Taking 24 typical desert plant species that are widely distributed in the nature reserves in Xinjiang Uygur Autonomous Region of China as the research objects,this study established an image database and select the optimal network model for the image recognition of desert plant species to provide decision support for fine management in the nature reserves in Xinjiang,such as species investigation and monitoring,by using deep learning.Since desert plant species were not included in the public dataset,the images used in this study were mainly obtained through field shooting and downloaded from the Plant Photo Bank of China(PPBC).After the sorting process and statistical analysis,a total of 2331 plant images were finally collected(2071 images from field collection and 260 images from the PPBC),including 24 plant species belonging to 14 families and 22 genera.A large number of numerical experiments were also carried out to compare a series of 37 convolutional neural network models with good performance,from different perspectives,to find the optimal network model that is most suitable for the image recognition of desert plant species in Xinjiang.The results revealed 24 models with a recognition Accuracy,of greater than 70.000%.Among which,Residual Network X_8GF(RegNetX_8GF)performs the best,with Accuracy,Precision,Recall,and F1(which refers to the harmonic mean of the Precision and Recall values)values of 78.33%,77.65%,69.55%,and 71.26%,respectively.Considering the demand factors of hardware equipment and inference time,Mobile NetworkV2 achieves the best balance among the Accuracy,the number of parameters and the number of floating-point operations.The number of parameters for Mobile Network V2(MobileNetV2)is 1/16 of RegNetX_8GF,and the number of floating-point operations is 1/24.Our findings can facilitate efficient decision-making for the management of species survey,cataloging,inspection,and monitoring in the nature reserves in Xinjiang,providing a scientific basis for the protection and utilization of natural plant resources.展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dim...The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate.展开更多
Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbase...Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbased gesture recognition due to its various applications.This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network(3D-CNN)and a Long Short-Term Memory(LSTM)network.The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation.The 3D-CNN is used for the extraction of spectral and spatial features which are then given to the LSTM network through which classification is carried out.The proposed model is a light-weight architecture with only 3.7 million training parameters.The model has been evaluated on 15 classes from the 20BN-jester dataset available publicly.The model was trained on 2000 video-clips per class which were separated into 80%training and 20%validation sets.An accuracy of 99%and 97%was achieved on training and testing data,respectively.We further show that the combination of 3D-CNN with LSTM gives superior results as compared to MobileNetv2+LSTM.展开更多
In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensiona...In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency.展开更多
This paper describes a 2D/3D vision chip with integrated sensing and processing capabilities.The 2D/3D vision chip architecture includes a 2D/3D image sensor and a programmable visual processor.In this architecture,we...This paper describes a 2D/3D vision chip with integrated sensing and processing capabilities.The 2D/3D vision chip architecture includes a 2D/3D image sensor and a programmable visual processor.In this architecture,we design a novel on-chip processing flow with die-to-die image transmission and low-latency fixed-point image processing.The vision chip achieves real-time end-to-end processing of convolutional neural networks(CNNs)and conventional image processing algo-rithms.Furthermore,an end-to-end 2D/3D vision system is built to exhibit the capacity of the vision chip.The vision system achieves real-timing applications under 2D and 3D scenes,such as human face detection(processing delay 10.2 ms)and depth map reconstruction(processing delay 4.1 ms).The frame rate of image acquisition,image process,and result display is larger than 30 fps.展开更多
The airborne two-dimensional stereo(2D-S) optical array probe has been operating for more than 10 yr, accumulating a large amount of cloud particle image data. However, due to the lack of reliable and unbiased classif...The airborne two-dimensional stereo(2D-S) optical array probe has been operating for more than 10 yr, accumulating a large amount of cloud particle image data. However, due to the lack of reliable and unbiased classification tools,our ability to extract meaningful morphological information related to cloud microphysical processes is limited. To solve this issue, we propose a novel classification algorithm for 2D-S cloud particle images based on a convolutional neural network(CNN), named CNN-2DS. A 2D-S cloud particle shape dataset was established by using the 2D-S cloud particle images observed from 13 aircraft detection flights in 6 regions of China(Northeast, Northwest, North,East, Central, and South China). This dataset contains 33,300 cloud particle images with 8 types of cloud particle shape(linear, sphere, dendrite, aggregate, graupel, plate, donut, and irregular). The CNN-2DS model was trained and tested based on the established 2D-S dataset. Experimental results show that the CNN-2DS model can accurately identify cloud particles with an average classification accuracy of 97%. Compared with other common classification models [e.g., Vision Transformer(ViT) and Residual Neural Network(ResNet)], the CNN-2DS model is lightweight(few parameters) and fast in calculations, and has the highest classification accuracy. In a word, the proposed CNN-2DS model is effective and reliable for the classification of cloud particles detected by the 2D-S probe.展开更多
As the basis of machine vision,the biomimetic image sensing devices are the eyes of artificial intelligence.In recent years,with the development of two-dimensional(2D)materials,many new optoelectronic devices are deve...As the basis of machine vision,the biomimetic image sensing devices are the eyes of artificial intelligence.In recent years,with the development of two-dimensional(2D)materials,many new optoelectronic devices are developed for their outstanding performance.However,there are still little sensing arrays based on 2D materials with high imaging quality,due to the poor uniformity of pixels caused by material defects and fabrication technique.Here,we propose a 2D MoS_(2)sensing array based on artificial neural network(ANN)learning.By equipping the MoS_(2)sensing array with a“brain”(ANN),the imaging quality can be effectively improved.In the test,the relative standard deviation(RSD)between pixels decreased from about 34.3%to 6.2%and 5.49%after adjustment by the back propagation(BP)and Elman neural networks,respectively.The peak signal to noise ratio(PSNR)and structural similarity(SSIM)of the image are improved by about 2.5 times,which realizes the re-recognition of the distorted image.This provides a feasible approach for the application of 2D sensing array by integrating ANN to achieve high quality imaging.展开更多
为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候...为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候选区域;在模型第二阶段引入水平框预测分支,并且设计一种间接预测角度的回归模型;在测试阶段进行旋转框非极大值抑制时,设计基于掩码矩阵的旋转框IoU(Intersection over Union)算法。试验结果显示:改进R^(2)CNN模型在HRSC2016(High Resolution Ship Collection 2016)数据集上取得81.0%的平均精确度,相比其他模型均有不同程度的提升,说明改进R^(2)CNN在简化模型的同时能有效提升使用旋转框检测船舶的性能。展开更多
基金the National Natural Science Foundation of China(No.81830052)the Shanghai Natural Science Foundation of China(No.20ZR1438300)the Shanghai Science and Technology Support Project(No.18441900500),China。
文摘To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates the segmentation results of three densely connected 2 D convolutional neural networks(2 D-CNNs).In order to combine the lowlevel features and high-level features,we added densely connected blocks in the network structure design so that the low-level features will not be missed as the network layer increases during the learning process.Further,in order to resolve the problems of the blurred boundary of the glioma edema area,we superimposed and fused the T2-weighted fluid-attenuated inversion recovery(FLAIR)modal image and the T2-weighted(T2)modal image to enhance the edema section.For the loss function of network training,we improved the cross-entropy loss function to effectively avoid network over-fitting.On the Multimodal Brain Tumor Image Segmentation Challenge(BraTS)datasets,our method achieves dice similarity coefficient values of 0.84,0.82,and 0.83 on the BraTS2018 training;0.82,0.85,and 0.83 on the BraTS2018 validation;and 0.81,0.78,and 0.83 on the BraTS2013 testing in terms of whole tumors,tumor cores,and enhancing cores,respectively.Experimental results showed that the proposed method achieved promising accuracy and fast processing,demonstrating good potential for clinical medicine.
基金This research/paper was fully supported by Universiti Teknologi PETRONAS,under the Yayasan Universiti Teknologi PETRONAS(YUTP)Fundamental Research Grant Scheme(015LC0-311).
文摘Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by 2040,implying that one out of every ten persons will be diabetic.There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’lives.Due to its rapid development,deep learning(DL)was used to predict numerous diseases.However,DLmethods still suffer from their limited prediction performance due to the hyperparameters selection and parameters optimization.Therefore,the selection of hyper-parameters is critical in improving classification performance.This study presents Convolutional Neural Network(CNN)that has achieved remarkable results in many medical domains where the Bayesian optimization algorithm(BOA)has been employed for hyperparameters selection and parameters optimization.Two issues have been investigated and solved during the experiment to enhance the results.The first is the dataset class imbalance,which is solved using Synthetic Minority Oversampling Technique(SMOTE)technique.The second issue is the model’s poor performance,which has been solved using the Bayesian optimization algorithm.The findings indicate that the Bayesian based-CNN model superbases all the state-of-the-art models in the literature with an accuracy of 89.36%,F1-score of 0.88.6,andMatthews Correlation Coefficient(MCC)of 0.88.6.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
基金supported by the West Light Foundation of the Chinese Academy of Sciences(2019-XBQNXZ-A-007)the National Natural Science Foundation of China(12071458,71731009).
文摘In recent years,deep convolution neural network has exhibited excellent performance in computer vision and has a far-reaching impact.Traditional plant taxonomic identification requires high expertise,which is time-consuming.Most nature reserves have problems such as incomplete species surveys,inaccurate taxonomic identification,and untimely updating of status data.Simple and accurate recognition of plant images can be achieved by applying convolutional neural network technology to explore the best network model.Taking 24 typical desert plant species that are widely distributed in the nature reserves in Xinjiang Uygur Autonomous Region of China as the research objects,this study established an image database and select the optimal network model for the image recognition of desert plant species to provide decision support for fine management in the nature reserves in Xinjiang,such as species investigation and monitoring,by using deep learning.Since desert plant species were not included in the public dataset,the images used in this study were mainly obtained through field shooting and downloaded from the Plant Photo Bank of China(PPBC).After the sorting process and statistical analysis,a total of 2331 plant images were finally collected(2071 images from field collection and 260 images from the PPBC),including 24 plant species belonging to 14 families and 22 genera.A large number of numerical experiments were also carried out to compare a series of 37 convolutional neural network models with good performance,from different perspectives,to find the optimal network model that is most suitable for the image recognition of desert plant species in Xinjiang.The results revealed 24 models with a recognition Accuracy,of greater than 70.000%.Among which,Residual Network X_8GF(RegNetX_8GF)performs the best,with Accuracy,Precision,Recall,and F1(which refers to the harmonic mean of the Precision and Recall values)values of 78.33%,77.65%,69.55%,and 71.26%,respectively.Considering the demand factors of hardware equipment and inference time,Mobile NetworkV2 achieves the best balance among the Accuracy,the number of parameters and the number of floating-point operations.The number of parameters for Mobile Network V2(MobileNetV2)is 1/16 of RegNetX_8GF,and the number of floating-point operations is 1/24.Our findings can facilitate efficient decision-making for the management of species survey,cataloging,inspection,and monitoring in the nature reserves in Xinjiang,providing a scientific basis for the protection and utilization of natural plant resources.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金Supported by the Shaanxi Province Key Research and Development Project(No.2021GY-280)Shaanxi Province Natural Science Basic Re-search Program Project(No.2021JM-459)+1 种基金the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61634004)the Shaanxi Province International Science and Technology Cooperation Project(No.2018KW-006).
文摘The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate.
文摘Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbased gesture recognition due to its various applications.This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network(3D-CNN)and a Long Short-Term Memory(LSTM)network.The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation.The 3D-CNN is used for the extraction of spectral and spatial features which are then given to the LSTM network through which classification is carried out.The proposed model is a light-weight architecture with only 3.7 million training parameters.The model has been evaluated on 15 classes from the 20BN-jester dataset available publicly.The model was trained on 2000 video-clips per class which were separated into 80%training and 20%validation sets.An accuracy of 99%and 97%was achieved on training and testing data,respectively.We further show that the combination of 3D-CNN with LSTM gives superior results as compared to MobileNetv2+LSTM.
基金Sponsored by the National Natural Science Foundation of China (Grant No.61771223)the Key Research and Development Program of Jiangsu Province(Grant No.SBE2018334)。
文摘In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFB2204300)in part by the National Natural Science Foundation of China(Grant Nos.62334008 and 62274154)in part by the Key Program of National Natural Science Foundation of China(Grant No.62134004).
文摘This paper describes a 2D/3D vision chip with integrated sensing and processing capabilities.The 2D/3D vision chip architecture includes a 2D/3D image sensor and a programmable visual processor.In this architecture,we design a novel on-chip processing flow with die-to-die image transmission and low-latency fixed-point image processing.The vision chip achieves real-time end-to-end processing of convolutional neural networks(CNNs)and conventional image processing algo-rithms.Furthermore,an end-to-end 2D/3D vision system is built to exhibit the capacity of the vision chip.The vision system achieves real-timing applications under 2D and 3D scenes,such as human face detection(processing delay 10.2 ms)and depth map reconstruction(processing delay 4.1 ms).The frame rate of image acquisition,image process,and result display is larger than 30 fps.
基金Supported by the National Key Research and Development Program of China (2019YFC1510301)Key Innovation Team Fund of the China Meteorological Administration (CMA2022ZD10)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2021Y010)。
文摘The airborne two-dimensional stereo(2D-S) optical array probe has been operating for more than 10 yr, accumulating a large amount of cloud particle image data. However, due to the lack of reliable and unbiased classification tools,our ability to extract meaningful morphological information related to cloud microphysical processes is limited. To solve this issue, we propose a novel classification algorithm for 2D-S cloud particle images based on a convolutional neural network(CNN), named CNN-2DS. A 2D-S cloud particle shape dataset was established by using the 2D-S cloud particle images observed from 13 aircraft detection flights in 6 regions of China(Northeast, Northwest, North,East, Central, and South China). This dataset contains 33,300 cloud particle images with 8 types of cloud particle shape(linear, sphere, dendrite, aggregate, graupel, plate, donut, and irregular). The CNN-2DS model was trained and tested based on the established 2D-S dataset. Experimental results show that the CNN-2DS model can accurately identify cloud particles with an average classification accuracy of 97%. Compared with other common classification models [e.g., Vision Transformer(ViT) and Residual Neural Network(ResNet)], the CNN-2DS model is lightweight(few parameters) and fast in calculations, and has the highest classification accuracy. In a word, the proposed CNN-2DS model is effective and reliable for the classification of cloud particles detected by the 2D-S probe.
基金This project was financially supported by the Dalian Science and Technology Innovation Fund of China(No.2019J11CY011)the Science Fund for Creative Research Groups of NSFC(No.51621064).
文摘As the basis of machine vision,the biomimetic image sensing devices are the eyes of artificial intelligence.In recent years,with the development of two-dimensional(2D)materials,many new optoelectronic devices are developed for their outstanding performance.However,there are still little sensing arrays based on 2D materials with high imaging quality,due to the poor uniformity of pixels caused by material defects and fabrication technique.Here,we propose a 2D MoS_(2)sensing array based on artificial neural network(ANN)learning.By equipping the MoS_(2)sensing array with a“brain”(ANN),the imaging quality can be effectively improved.In the test,the relative standard deviation(RSD)between pixels decreased from about 34.3%to 6.2%and 5.49%after adjustment by the back propagation(BP)and Elman neural networks,respectively.The peak signal to noise ratio(PSNR)and structural similarity(SSIM)of the image are improved by about 2.5 times,which realizes the re-recognition of the distorted image.This provides a feasible approach for the application of 2D sensing array by integrating ANN to achieve high quality imaging.