期刊文献+
共找到13,568篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Post-Quantum Information Security: A Novel Two-Dimensional Chaotic System for Quantum Image Encryption
1
作者 Fatima Asiri Wajdan Al Malwi 《Computer Modeling in Engineering & Sciences》 2025年第5期2053-2077,共25页
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica... Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications. 展开更多
关键词 Information security chaotic map modeling post-quantum security quantum image encryption chaotic map image encryption
在线阅读 下载PDF
Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes–Vanstone elliptic curve cryptosystem 被引量:2
2
作者 Zeyu Liu Tiecheng Xia Jinbo Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期161-176,共16页
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif... We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms. 展开更多
关键词 CHAOS fractional two-dimensional triangle function combination discrete chaotic map image encryption Menezes-Vanstone elliptic curve cryptosystem
原文传递
A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors 被引量:2
3
作者 Li-Ping Zhang Yang Liu +2 位作者 Zhou-ChaoWei Hai-Bo Jiang Qin-Sheng Bi 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期109-114,共6页
We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability... We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability. 展开更多
关键词 two-dimensional map infinitely many coexisting attractors extreme multi-stability chaotic attractor
原文传递
Wearable Biodevices Based on Two-Dimensional Materials:From Flexible Sensors to Smart Integrated Systems 被引量:1
4
作者 Yingzhi Sun Weiyi He +3 位作者 Can Jiang Jing Li Jianli Liu Mingjie Liu 《Nano-Micro Letters》 2025年第5期207-255,共49页
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over... The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices. 展开更多
关键词 two-dimensional material Wearable biodevice Flexible sensor Smart integrated system Healthcare
在线阅读 下载PDF
CHAOTIC MOTIONS AND LIMIT CYCLE FLUTTER OF TWO-DIMENSIONAL WING IN SUPERSONIC FLOW 被引量:4
5
作者 Guoyong Zheng Yiren Yang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第5期441-448,共8页
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contai... Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow. 展开更多
关键词 supersonic flow NONLINEARITY CHAOS limit cycle flutter two-dimensional wing
在线阅读 下载PDF
Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries
6
作者 CHEN Xiaoli LUO Zhihong +3 位作者 XIONG Yuzhu WANG Aihua CHEN Xue SHAO Jiaojing 《无机化学学报》 北大核心 2025年第8期1661-1671,共11页
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface... A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property. 展开更多
关键词 vermiculite nanosheets two-dimensional materials INTERLAYER shuttle effect lithium-sulfur batteries
在线阅读 下载PDF
Finite-Time Expected Present Value of Operating Costs until Ruin in a Two-Dimensional Risk Model with Periodic Observation
7
作者 TENG Ye XIE Jiayi ZHANG Zhimin 《应用概率统计》 北大核心 2025年第5期748-765,共18页
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m... This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem. 展开更多
关键词 two-dimensional risk model Fourier cosine expansion capital injection DIVIDEND
在线阅读 下载PDF
Digital communication of two-dimensional messages in a chaotic optical system
8
作者 周云 吴亮 朱士群 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第11期2196-2201,共6页
The digital communication of two-dimensional messages is investigated when two solid state multi-mode chaotic lasers are employed in a master-slave configuration. By introducing the time derivative of intensity differ... The digital communication of two-dimensional messages is investigated when two solid state multi-mode chaotic lasers are employed in a master-slave configuration. By introducing the time derivative of intensity difference between the receiver (carrier) and the transmittal (carrier plus signal), several signals can be encoded into a single pulse. If one signal contains several binary bits, two-dimensional messages in the form of a matrix can be encoded and transmitted on a single pulse. With these improvements in secure communications using chaotic multi-mode lasers, not only the transmission rate can be increased but also the privacy can be enhanced greatly. 展开更多
关键词 digital communication multi-mode laser two-dimensional messages chaotic synchronization
原文传递
MXenes-based separators with nanoconfined two-dimensional channels for high-performance lithium-sulfur battery
9
作者 Yi-Hui Zhao Shuai Li +6 位作者 Yu-Lu Huo Zhen Li Lan-Lan Hou Yong-Qiang Wen Xiao-Xian Zhao Jian-Jun Song Jing-Chong Liu 《Rare Metals》 2025年第5期2921-2944,共24页
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch... Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators. 展开更多
关键词 Lithium-sulfur battery MXenes SEPARATOR two-dimensional materials two-dimensional nanochannels
原文传递
Periodic,quasiperiodic and chaotic discrete breathers in a parametrical driven two-dimensional discrete diatomic Klein-Gordon lattice
10
作者 徐权 田强 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2469-2474,共6页
We study a two-dimensional (2D) diatomic lattice of anhaxmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of... We study a two-dimensional (2D) diatomic lattice of anhaxmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the 2D discrete diatomic Klein-Gordon lattice with hard and soft on-site potentials. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers (QDBs) and chaotic discrete breathers (CDBs) by changing the amplitude of the driver. But the DBs and QDBs with symmetric and anti-symmetric profiles that are centered at a heavy atom are more stable than at a light atom, because the frequencies of the DBs and QDBs centered at a heavy atom are lower than those centered at a light atom. 展开更多
关键词 discrete breather quasi-periodic discrete breather chaotic discrete breather two-dimensional discrete diatomic Klein-Gordon lattice
原文传递
Image Thresholding Using Two-Dimensional Tsallis Cross Entropy Based on Either Chaotic Particle Swarm Optimization or Decomposition
11
作者 吴一全 张晓杰 吴诗婳 《China Communications》 SCIE CSCD 2011年第7期111-121,共11页
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e... The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly. 展开更多
关键词 signal and information processing image segmentation threshold selection two-dimensional Tsallis cross entropy chaotic particle swarm optimization DECOMPOSITION
在线阅读 下载PDF
Periodic, quasiperiodic, and chaotic breathers in two-dimensional discrete β-Fermi-Pasta-Ulam lattice
12
作者 徐权 田强 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期539-541,共3页
Using numerical method, we investigate whether periodic, quasiperiodic, and chaotic breathers are supported by the two-dimensional discrete Fermi-Pasta-Ulam (FPU) lattice with linear dispersion term. The spatial pro... Using numerical method, we investigate whether periodic, quasiperiodic, and chaotic breathers are supported by the two-dimensional discrete Fermi-Pasta-Ulam (FPU) lattice with linear dispersion term. The spatial profile and time evolution of the two-dimensional discrete fl-FPU lattice are segregated by the method of separation of variables, and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system. By introducing a periodic interaction into the linear interaction between the atoms, we achieve the coupling of two incommensurate frequencies for a single DB, and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system, too. 展开更多
关键词 BREATHER quasiperiodic breather chaotic breather
原文传递
Two-Dimensional TiO_(2)Ultraviolet Filters for Sunscreens
13
作者 Ling QiuHui-Ming Cheng Ruoning Yang +10 位作者 Jiefu Chen Xiang Li Yaxin Zhang Baofu Ding Yujiangsheng Xu Shaoqiang Luo Shaohua Ma Xingang Ren Gang Liu Ling Qiu Hui-Ming Cheng 《Nano-Micro Letters》 2025年第12期108-119,共12页
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ... Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance. 展开更多
关键词 two-dimensional Titanium dioxide SUNSCREEN BIOSAFETY
在线阅读 下载PDF
Analysis of Leakage Effects on Outlet Flow Characteristics of a Two-dimensional Piston Pump
14
作者 Yu Huang Hanyu Xu +2 位作者 Wei Shao Chuan Ding Li Liu 《Chinese Journal of Mechanical Engineering》 2025年第3期545-557,共13页
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef... Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system. 展开更多
关键词 two-dimensional piston pump LEAKAGE Numerical simulation CLEARANCE
在线阅读 下载PDF
Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030
15
作者 Jing Guo Jianzhong Ma +18 位作者 Junli Liu Guanjie Huang Xiaoting Zhou Francesco Parrino Riccardo Ceccato Leonardo Palmisano Boon-Junn Ng Lutfi Kurnianditia Putri Huaxing Li Rongjie Li Gang Liu Yang Wang Nikolay Kornienko Shan-Shan Zhu Zhenwei Zhang Xiaoming Liu Nur Atika Nikma Dahlan Siang-Piao Chai Jianmin Ma 《Chinese Chemical Letters》 2025年第9期223-235,共13页
Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of... Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications. 展开更多
关键词 Environmental catalysis two-dimensional materials ELECTROCATALYSIS PHOTOCATALYSIS NANOMATERIALS
原文传递
Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
16
作者 Songyang Li Zhiguang Zhu +2 位作者 Youzhi Zhang Chengke Chen Xiaojun Hu 《Chinese Physics B》 2025年第5期596-607,共12页
It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament ch... It is a key challenge to prepare two-dimensional diamond(2D-diamond).Herein,we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum(Ta)atoms onto graphene substrates using a hot-filament chemical vapor deposition setup,followed by annealing treatment under different temperatures at ambient pressure.The results indicate that when the annealing temperature increases from 700℃ to 1000℃,the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm.Meanwhile,the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase.As the annealing temperature continues to rise to 1100℃,a significant aggregation of Ta-containing compounds is observed in the samples,with no diamond structure detected.This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond.This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond. 展开更多
关键词 GRAPHENE two-dimensional diamond vacuum annealing phase transition
原文传递
Exciton insulators in two-dimensional systems
17
作者 Huaiyuan Yang Xi Dai Xin-Zheng Li 《Chinese Physics B》 2025年第9期496-505,共10页
Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials,and in lowdimensional systems this is especially true due to the decrease of screening.In this review,we focus o... Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials,and in lowdimensional systems this is especially true due to the decrease of screening.In this review,we focus on one unique quantum phase induced by the electron-hole interaction in two-dimensional systems,known as“exciton insulators”(EIs).Although this phase of matter has been studied for more than half a century,suitable platforms for its stable realization remain scarce.We provide an overview of the strategies to realize EIs in accessible materials and structures,along with a discussion on some unique properties of EIs stemming from the band structures of these materials.Additionally,signatures in experiments to distinguish EIs are discussed. 展开更多
关键词 excitonic insulator two-dimensional materials
原文传递
Ultrathin two-dimensional electrocatalysts: Structure-property relationships, mechanistic insights, and applications in water electrolysis
18
作者 Lina Wang Muhan Na +5 位作者 Ruofei Du Xiujin Wang Boyang Yu Lan Yang Hui Chen Xiaoxin Zou 《Chinese Journal of Catalysis》 2025年第10期4-19,共16页
The pursuit of sustainable hydrogen production has positioned water electrolysis as a cornerstone technology for global carbon neutrality.However,sluggish kinetics,catalyst scarcity,and system integration challenges h... The pursuit of sustainable hydrogen production has positioned water electrolysis as a cornerstone technology for global carbon neutrality.However,sluggish kinetics,catalyst scarcity,and system integration challenges hinder its widespread deployment.Ultrathin two-dimensional(2D)materials,with their atomically exposed surfaces,tunable electronic structures,and defect-engineering capabilities,present unique opportunities for next-generation electrocatalysts.This review provides an integrated overview of ultrathin 2D electrocatalysts,discussing their structural diversity,synthetic routes,structure-activity relationships,and mechanistic understanding in water electrolysis processes.Special focus is placed on the translation of 2D materials from laboratory research to practical device implementation,emphasizing challenges such as scalable fabrication,interfacial engineering,and operational durability in realistic electrolyzer environments.The role of advanced characterization techniques in capturing dynamic structural changes and active site evolution is discussed.Finally,we outline future research directions,emphasizing the synergy of machine learning-driven materials discovery,advanced operando characterization,and scalable system integration to accelerate the industrial translation of 2D electrocatalysts for green hydrogen production. 展开更多
关键词 two-dimensional material Water splitting reaction ELECTROCATALYSIS Catalytic mechanism ELECTROLYZER
在线阅读 下载PDF
Interlayer Slipping Facilitating Manipulation of Electronic Properties of Few-Layer Two-Dimensional Conjugated Polymers
19
作者 Yang Li Pu Wang +6 位作者 Yongshuai Wang Dan Liu Qingbin Li Jichen Dong Yunqi Liu Wenping Hu Huanli Dong 《SmartMat》 2025年第3期101-112,共12页
Two-dimensional conjugated polymers(2DCPs)have received great interest in smart devices due to their unique physical properties associated with flexibility,nanosized thickness,and correlated quantum size effect.Contro... Two-dimensional conjugated polymers(2DCPs)have received great interest in smart devices due to their unique physical properties associated with flexibility,nanosized thickness,and correlated quantum size effect.Control of interlayer interactions of multilayer 2DCPs is crucial for modulating the confinement of charge carriers,heat,and photons to give remarkable properties because of the breaking of symmetry.However,to date,it is unclear how the multilayers of 2DCPs affect their physical properties.In this article,we for the first time perform a density functional theory calculation for the interlayer slipping effect on in-plane electronic properties of few-layer 2DCPs.Based on five homopolymers formed by C-C bonds with various stacking configurations beyond the inclined and serrated ones,results show that a moderate electric field causes the valence(conduction)band of few-layer 2DCPs to exhibit distinctive electrical characteristics which are dominated by the outermost two layers on hole(electron)enriched side.Analysis based on recombined molecular orbitals reveals that band properties are sensitive to the interlayer offsets when they result from the interference among multiple orbitals from each building block.This result provides a new guideline for manipulating charge transfer and spintronic properties of few-layer 2DCPs through an electric field to advance their various applications. 展开更多
关键词 density functional theory interference interlayer interactions two-dimensional conjugated polymers
原文传递
Exploring Electric Vehicle Purchases and Residential Choices in a Two-Dimensional Monocentric City:An Agent-Based Microeconomic Model
20
作者 Chao Shu Yue Bao +1 位作者 Ziyou Gao Zaihan Gao 《Engineering》 2025年第3期316-330,共15页
Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subs... Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subsequent impact on urban structure.Considering the varying travel costs associated with electric and fuel vehicles,we analyze the dynamic choices of households concerning house locations and vehicle types in a two-dimensional monocentric city.A spatial equilibrium is developed to model the interactions between urban density,vehicle age and vehicle type.An agent-based microeconomic residential choice model dynamically coupled with a house rent market is developed to analyze household choices of home locations and vehicle energy types,considering vehicle ages and competition for public charging piles.Key findings from our proposed models show that the proportion of electric vehicles(EVs)peaks at over 50%by the end of the first scrappage period,accompanied by more than a 40%increase in commuting distance and time compared to the scenario with only fuel vehicles.Simulation experiments on a theoretical grid indicate that heterogeneity-induced residential segregation can lead to urban sprawl and congestion.Furthermore,households with EVs tend to be located farther from the city center,and an increase in EV ownership contributes to urban expansion.Our study provides insights into how individuals adapt to EV transitions and the resulting impacts on home locations and land use changes.It offers a novel perspective on the dynamic interactions between EV adoption and urban development. 展开更多
关键词 Electric vehicles two-dimensional monocentric city Agent-based model Residential segregation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部