Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the...Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.展开更多
Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as...Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.展开更多
A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The propose...A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.展开更多
A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independentl...A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.展开更多
This paper addresses the problem of direction-of-arrival (DOA) and polarization estima- tion with polarization sensitive arrays (PSA), which has been a hot topic in the area of array signal processing during the p...This paper addresses the problem of direction-of-arrival (DOA) and polarization estima- tion with polarization sensitive arrays (PSA), which has been a hot topic in the area of array signal processing during the past two or three decades. The sparse Bayesian learning (SBL) technique is introduced to exploit the sparsity of the incident signals in space to solve this problem and a new method is proposed by reconstructing the signals from the array outputs first and then exploit- ing the reconstructed signals to realize parameter estimation. Only 1-D searching and numerical calculations are contained in the proposed method, which makes the proposed method computa- tionally much efficient. Based on a linear array consisting of identically structured sensors, the proposed method can be used with slight modifications in PSA with different polarization structures. It also performs well in the presence of coherent signals or signals with different degrees of polarization. Simulation results are given to demonstrate the parameter estimation precision of the proposed method.展开更多
In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criter...In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.展开更多
In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground sig...In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.展开更多
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult...A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.展开更多
A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.Acc...A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a spa...A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.展开更多
Unmanned Aerial Vehicle(UAV)equipped with uniform linear array has been applied to multiple emitters localization.Meanwhile,nested linear array enables to enhance localization resolution and achieve under-determined D...Unmanned Aerial Vehicle(UAV)equipped with uniform linear array has been applied to multiple emitters localization.Meanwhile,nested linear array enables to enhance localization resolution and achieve under-determined Direction of Arrival(DOA)estimation.In this paper,we propose a new system structure for emitters localization that combines the UAV with nested linear array,which is capable of significantly increasing the positioning accuracy of interested targets.Specifically,a localization scheme is designed to obtain the paired two-dimensional DOA(2D-DOA,i.e.azimuth and elevation angles)estimates of emitters by nested linear array with UAV.Furthermore,we propose an improved DOA estimation algorithm for emitters localization that utilizes Discrete Fourier Transform(DFT)method to obtain coarse DOA estimates,subsequently,achieve the fine DOA estimates by sparse representation.The proposed algorithm has lower computational complexity because the coarse DOA estimates enable to shrink the range of over-complete dictionary of sparse representation.In addition,compared to traditional uniform linear array,improved 2D-DOA estimation performance of emitters can be obtained with a nested linear array.Extensive simulation results testify the effectiveness of the proposed method.展开更多
To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition...To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.展开更多
The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is propose...The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.展开更多
In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear...In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.展开更多
The problem of estimating direction of arrivals (DOA) and Doppler frequency for many sources is considered in the presence of general array errors (such as amplitude and phase error of sensors, setting position error ...The problem of estimating direction of arrivals (DOA) and Doppler frequency for many sources is considered in the presence of general array errors (such as amplitude and phase error of sensors, setting position error of sensors). Adopting direct array manifold in a uniform circular array (UCA), the estimation of Doppler frequency can be obtained by DOA matrix. Based on analyzing the statistic characters of general array errors, the estimation of DOA can be obtained by Weight Total Least Squares. Numerical results illustrate that the estimator is robust to general array errors and show the capabilities of the estimator.展开更多
To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse lin...To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse linear model constructed from the eigenvectors of covariance matrix of array received signals is built.Then based on the FOCal Underdetermined System Solver(FOCUSS) algorithm,a sparse solution finding algorithm to solve the model is developed.Compared with other state-of-the-art methods using a sparse representation,our approach also can resolve closely and highly correlated sources without a priori knowledge of the number of sources.However,our method has lower computational complexity and performs better in low Signal-to-Noise Ratio(SNR).Lastly,the performance of the proposed method is illustrated by computer simulations.展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
This paper introduces a method for solving DOA estimation ambiguity in ESPRIT algorithm with the conventional beamformer. With the help of it, for any space of two subarrays, the signal DOA in [-π/2 ,π/2] can be est...This paper introduces a method for solving DOA estimation ambiguity in ESPRIT algorithm with the conventional beamformer. With the help of it, for any space of two subarrays, the signal DOA in [-π/2 ,π/2] can be estimated effectively by using ESPRIT algorithm. Finally, some simulation results to verify the theoretical analyses are presented.展开更多
基金supported by China National Science Foundations(Nos.62371225,62371227)。
文摘Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.
基金supported by the National Natural Science Foundation of China (62071144)
文摘Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.
文摘A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.
文摘A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.
基金co-supported by the National Natural Science Foundation of China(No.61302141)the Special Fund for Doctoral Subjects in Higher Education Institutions of China(No.20134307120023)
文摘This paper addresses the problem of direction-of-arrival (DOA) and polarization estima- tion with polarization sensitive arrays (PSA), which has been a hot topic in the area of array signal processing during the past two or three decades. The sparse Bayesian learning (SBL) technique is introduced to exploit the sparsity of the incident signals in space to solve this problem and a new method is proposed by reconstructing the signals from the array outputs first and then exploit- ing the reconstructed signals to realize parameter estimation. Only 1-D searching and numerical calculations are contained in the proposed method, which makes the proposed method computa- tionally much efficient. Based on a linear array consisting of identically structured sensors, the proposed method can be used with slight modifications in PSA with different polarization structures. It also performs well in the presence of coherent signals or signals with different degrees of polarization. Simulation results are given to demonstrate the parameter estimation precision of the proposed method.
基金support of the Science and Technology Commission of Chongqing through the Nature Science Fund (2013jj B40005)supported by the Fundamental Research Funds for the Central University (106112016CDJZR165508) of China
文摘In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.
基金co-supported by the National Natural Science Foundation of China (No. 61073012)the Aeronautical Science Foundation of China (No. 20111951015)
文摘In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.
文摘A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
文摘A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.
基金Supported by the National Natural Science Foundation of China (61072098 61072099+1 种基金 60736006)PCSIRT-IRT1005
文摘A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX18_0103,KYCX18_0293)China NSF Grants(61371169,61601167,61601504)+2 种基金Jiangsu NSF(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(No.K201826)the Fundamental Research Funds for the Central Universities(NO.NE2017103).
文摘Unmanned Aerial Vehicle(UAV)equipped with uniform linear array has been applied to multiple emitters localization.Meanwhile,nested linear array enables to enhance localization resolution and achieve under-determined Direction of Arrival(DOA)estimation.In this paper,we propose a new system structure for emitters localization that combines the UAV with nested linear array,which is capable of significantly increasing the positioning accuracy of interested targets.Specifically,a localization scheme is designed to obtain the paired two-dimensional DOA(2D-DOA,i.e.azimuth and elevation angles)estimates of emitters by nested linear array with UAV.Furthermore,we propose an improved DOA estimation algorithm for emitters localization that utilizes Discrete Fourier Transform(DFT)method to obtain coarse DOA estimates,subsequently,achieve the fine DOA estimates by sparse representation.The proposed algorithm has lower computational complexity because the coarse DOA estimates enable to shrink the range of over-complete dictionary of sparse representation.In addition,compared to traditional uniform linear array,improved 2D-DOA estimation performance of emitters can be obtained with a nested linear array.Extensive simulation results testify the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (60601016)
文摘To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.
基金supported by the National Science Foundation of China (No.61371169)the Aeronautical Science Foundation of China(No.20120152001)
文摘The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(51877015,U1831117)the Cooperation Agreement Foundation by the Department of Science and Technology of Guizhou Province of China(LH[2017]7320,LH[2017]7321,[2015]7249)+2 种基金the Innovation Group Major Research Program Funded by Guizhou Provincial Education Department(KY[2016]051)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China(KY[2018]075)PhD Research Startup Foundation of Tongren University(trxy DH1710)。
文摘In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.
文摘The problem of estimating direction of arrivals (DOA) and Doppler frequency for many sources is considered in the presence of general array errors (such as amplitude and phase error of sensors, setting position error of sensors). Adopting direct array manifold in a uniform circular array (UCA), the estimation of Doppler frequency can be obtained by DOA matrix. Based on analyzing the statistic characters of general array errors, the estimation of DOA can be obtained by Weight Total Least Squares. Numerical results illustrate that the estimator is robust to general array errors and show the capabilities of the estimator.
基金Supported by the National Natural Science Foundation of China (No. 60502040)the Innovation Foundation for Outstanding Postgraduates in the Electronic Engineering Institute of PLA (No. 2009YB005)
文摘To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse linear model constructed from the eigenvectors of covariance matrix of array received signals is built.Then based on the FOCal Underdetermined System Solver(FOCUSS) algorithm,a sparse solution finding algorithm to solve the model is developed.Compared with other state-of-the-art methods using a sparse representation,our approach also can resolve closely and highly correlated sources without a priori knowledge of the number of sources.However,our method has lower computational complexity and performs better in low Signal-to-Noise Ratio(SNR).Lastly,the performance of the proposed method is illustrated by computer simulations.
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.
文摘This paper introduces a method for solving DOA estimation ambiguity in ESPRIT algorithm with the conventional beamformer. With the help of it, for any space of two subarrays, the signal DOA in [-π/2 ,π/2] can be estimated effectively by using ESPRIT algorithm. Finally, some simulation results to verify the theoretical analyses are presented.