期刊文献+
共找到700篇文章
< 1 2 35 >
每页显示 20 50 100
AlO_(2):A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds
1
作者 Xinghong Cai Qiang Yang +4 位作者 Yao Tong Lanyin Liu Wutang Zhang Sam Zhang Min Wang 《Chinese Chemical Letters》 2025年第2期529-535,共7页
We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-o... We propose and investigate a novel stable two-dimensional(2D)AlO_(2)with anomalous stoichiometric ratios based on first-principles calculation.2D AlO_(2)has metallic properties.It possesses the rare in-plane and out-of-plane negative Poisson's ratio(NPR)phenomenon,originating from its special sawtooth-like structure.The absolute value of the NPR decreases as the number of layers increases.The adsorption of volatile organic compounds(VOCs)including CH_(2)O,C_(2)H_(3)Cl and C_(6)H_(6)by AlO_(2)exhibit small adsorption distance,large adsorption energy,large charge transfer and significant density of states(DOS)changes,indicating the presence of strong interactions.The desorption time of each gas molecule on the AlO_(2)surface is also evaluated,and the results further suggest that the desorption of VOCs can be controlled by changing the temperature to achieve the recycling of AlO_(2).These interesting properties make 2D AlO_(2)a promising material for electronic,mechanical and sensing applications for VOCs. 展开更多
关键词 AlO_(2) Negative Poisson's ratio VOCs two-dimensional material First-principles calculations
原文传递
Advancing sensing frontiers:elevating performance metrics and extending applications through two-dimensional materials
2
作者 Zhi-Hao Huang Liu-Xing Peng +4 位作者 Xiao-Lei Liu Kun Sun Jie-Feng Liu Fu-Mei Yang Qing Wu 《Rare Metals》 2025年第2期721-756,共36页
The immense prospects of two-dimensional(2D)materials in the field of high-performance sensing stem from their unique layered structures and superior properties.Constructing heterostructures and refining sensor archit... The immense prospects of two-dimensional(2D)materials in the field of high-performance sensing stem from their unique layered structures and superior properties.Constructing heterostructures and refining sensor architectures are at the forefront of innovative research to enhance sensor performance.This review synthesizes the current literature,discussing the photovoltaic attributes,fabrication methods,analytical techniques and integration strategies pertinent to 2D materials.This comprehensive review of the operating principles of various sensors investigates the recent progress and deployment of these materials within diverse sensing devices,including chemical sensors,biosensors and optical sensors.Conclusively,this review serves as a valuable reference for understanding the applications and progress of 2D materials in high-performance sensors and explores their potential in interdisciplinary research. 展开更多
关键词 2d materials Sensor technology HETEROSTRUCTURE Composite materials
原文传递
Functionalization,Properties and Applications of Hydrogenated Two-Dimensional Materials
3
作者 Shakeel Ahmed Faizah Altaf +7 位作者 Rajesh Kumar Manavalan Ranjith Kumar Dharman Kashif Naseem Jahanzeb Khan Baoji Miao Sung Yeol Kim Han Zhang Joice Sophia Ponraj 《Transactions of Tianjin University》 2025年第3期205-269,共65页
Hydrogenated two-dimensional(2D)materials have gained significant attention due to their tunable properties,which can be engineered through various functionalization techniques.This review discusses hydrogenated Xenes... Hydrogenated two-dimensional(2D)materials have gained significant attention due to their tunable properties,which can be engineered through various functionalization techniques.This review discusses hydrogenated Xenes,a new class of fully hydrogenated mono-elemental 2D materials,including graphane,germanane,silicane,and stanane.Hydrogenation enhances the properties of Xenes,making them transparent,mechanically strong,electrically conductive,and rare.These materials off er a unique combination of characteristics that make them highly desirable for a variety of advanced applications in energy storage,organic electronics,and optoelectronics.Xenes such as silicane and germanane are semiconductors with tunable bandgaps,making them ideal for use in transistors,logic circuits,and sensors.Their electronic and optical properties can be finely adjusted,allowing them to be used in high-performance devices like LEDs,solar cells,and photodetectors.Furthermore,hydrogenated Xenes show potential in applications like batteries,supercapacitors,hydrogen storage,piezoelectricity,and biosensing,owing to their high surface area and versatility.This review also explores the impact of various hydrogenation techniques,including plasma treatment,wet chemical methods,and electrochemical hydrogenation,on the electronic,mechanical,thermal,optical,and magnetic properties of these materials.Advanced characterization techniques,such as X-ray absorption spectroscopy(XANES),have provided valuable insights into the electronic structure and bonding environments of these materials.Finally,the paper highlights the challenges and limitations of hydrogenation,including structural instability and environmental concerns,while discussing the future prospects and advancements needed to harness the full potential of hydrogenated 2D materials.This review serves as a comprehensive resource for researchers aiming to explore the applications of hydrogenated Xenes in next-generation technologies. 展开更多
关键词 Hydrogenation xanes 2d materials GRAPHANE Germanane SILICANE Stanene Bandgap tuning Energy storage
在线阅读 下载PDF
Two-Dimensional Materials,the Ultimate Solution for Future Electronics and Very-Large-Scale Integrated Circuits
4
作者 Laixiang Qin Li Wang 《Nano-Micro Letters》 2025年第10期600-652,共53页
The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor indu... The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor industry entering into sub-10 nm technology nodes,degrading device performance and increasing power consumption give rise to insurmountable roadblocks confronted by modern ICs that need to be conquered to sustain the Moore law's life.Bulk semiconductors like prevalent Si are plagued by seriously degraded carrier mobility as thickness thinning down to sub-5 nm,which is imperative to maintain sufficient gate electrostatic controllability to combat the increasingly degraded short channel effects.Nowadays,the emergence of two-dimensional(2D)materials opens up new gateway to eschew the hurdles laid in front of the scaling trend of modern IC,mainly ascribed to their ultimately atomic thickness,capability to maintain carrier mobility with thickness thinning down,dangling-bonds free surface,wide bandgaps tunability and feasibility to constitute diverse heterostructures.Blossoming breakthroughs in discrete electronic device,such as contact engineering,dielectric integration and vigorous channel-length scaling,or large circuits arrays,as boosted yields,improved variations and full-functioned processor fabrication,based on 2D materials have been achieved nowadays,facilitating 2D materials to step under the spotlight of IC industry to be treated as the most potential future successor or complementary counterpart of incumbent Si to further sustain the down-scaling of modern IC. 展开更多
关键词 2d materials Short channel effects Integrated circuits degraded carrier mobility Moore's law
在线阅读 下载PDF
Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling
5
作者 Zhuoqun Wen Haiyu Zhu +3 位作者 Wen-Hao Liu Zhi Wang Wen Xiong Xingzhan Wei 《Chinese Physics B》 2025年第7期491-497,共7页
Understanding the dynamics of photoexcited carriers is essential for advancing photoelectronic device design.Photon absorption generates electron–hole pairs,and subsequent scatterings can induce ultrafast thermalizat... Understanding the dynamics of photoexcited carriers is essential for advancing photoelectronic device design.Photon absorption generates electron–hole pairs,and subsequent scatterings can induce ultrafast thermalization within a picosecond,forming a quasi-equilibrium distribution with overheated electrons.The high-energy tail of this distribution enables carriers to overcome energy barriers,thereby enhancing quantum efficiency—a phenomenon known as photothermionic emission(PTE).Despite its importance,the onset and mechanisms of PTE remain under debate.Using real-time timedependent density functional theory(rt-TDDFT),we investigate ultrafast carrier thermalization in two-dimensional(2D)materials graphene and PtTe2,and the results reveal distinct differences.In graphene,both electrons and holes thermalize into Fermi–Dirac distributions with good agreement to experiment,while PtTe2exhibits anomalous high-energy tails for both electrons and holes,deviating significantly from Fermi–Dirac behavior.We attribute this anomaly to differences in orbital coupling between the two materials,from which we derive design principles for identifying optimal PTE candidates and,ultimately,improving photodetector performance. 展开更多
关键词 ultrafast phenomena time-dependent density functional theory photoelectronics photothermionic emission 2d materials graphene platinum ditelluride
原文传递
Plasma engineering of two-dimensional transition metal dichalcogenides:From material synthesis to functional device integration
6
作者 Yuan Xie Ai Zhang +3 位作者 Guangjun Wang Shida Huo Pingjuan Niu Enxiu Wu 《Nano Research》 2025年第11期381-410,共30页
Two-dimensional transition metal dichalcogenides(TMDs)have shown great potential for application in the next generation of electronics and optoelectronics due to their atomically thin thickness,tunable band gap,and st... Two-dimensional transition metal dichalcogenides(TMDs)have shown great potential for application in the next generation of electronics and optoelectronics due to their atomically thin thickness,tunable band gap,and strong light-matter interaction.However,their practical application is still limited by challenges such as the constraints of high-temperature synthesis processes,compatibility issues of p-type/n-type doping strategies,and insufficient nanoscale patterning accuracy.Plasma treatment has become a key technology to break through these bottlenecks with its unique advantages such as low-temperature operation capability,generation of highly active reactive species and precise controllability of multiple parameters.This review comprehensively reviews the latest progress in plasma engineering of TMDs(MoS_(2),WS_(2),WSe_(2),etc.)based on a systematic“fundamental process-property modulation-device innovation”framework.The key plasma technologies are highlighted:plasma-enhanced chemical vapor deposition(PECVD)for low-temperature growth,bidirectional doping achieved through active species regulation,atomic layer precision etching,and defect engineering.The regulation mechanism of plasma on the intrinsic properties of materials is systematically analyzed,including electronic structure modification,optical property optimization(such as photoluminescence enhancement)and structural feature evolution.It then reveals how plasma technology promotes device innovation:achieving customizable structures(p-n junctions,sub-10 nanometer channels),optimizing interface properties(reducing contact resistance,integrating high-k dielectrics),and significantly improving the performance of gas sensors,photodetectors and neuromorphic computing systems.Finally,this article looks forward to future research directions,emphasizing that plasma technology is a versatile and indispensable platform for promoting TMDs towards practical applications. 展开更多
关键词 plasma engineering two-dimensional(2d)transition metal dichalcogenides doping and defect modulation device integration
原文传递
The amorphization strategies of two-dimensional transition metal oxide/(oxy)hydroxide nanomaterials for enhanced electrocatalytic water splitting
7
作者 Si-Bin Duan Yu-Qing Wang +3 位作者 Rui Cao Yi-Fei Sun Wen Zhang Rong-Ming Wang 《Rare Metals》 2025年第2期822-840,共19页
Amorphous two-dimensional transition metal oxide/(oxy)hydroxide(2D TMO/TMHO)nanomaterials(NMs)have the properties of both 2D and amorphous materials,displaying outstanding physicochemical qualities.Therefore,they demo... Amorphous two-dimensional transition metal oxide/(oxy)hydroxide(2D TMO/TMHO)nanomaterials(NMs)have the properties of both 2D and amorphous materials,displaying outstanding physicochemical qualities.Therefore,they demonstrate considerable promise for use in electrocatalytic water splitting applications.Here,the primary amorphization strategies for achieving the 2D TMO/TMHO NMs are comprehensively reviewed,including low-temperature reaction,rapid reaction,exchange/doping effect,ligand modulation,and interfacial energy confinement.By integrating these strategies with various physicochemical synthesis methods,it is feasible to control the amorphization of TMO/TMHO NMs while maintaining the distinctive benefits of their 2D structures.Furthermore,it delves into the structural advantages of amorphous 2D TMO/TMHO NMs in electrocatalytic water splitting,particularly emphasizing recent advancements in enhancing their electrocatalytic performance through interface engineering.The challenges and potential future directions for the precise synthesis and practical application of amorphous 2D TMO/TMHO NMs are also provided.This review aims to establish a theoretical foundation and offer experimental instructions for developing effective and enduring electrocatalysts for water splitting. 展开更多
关键词 Amorphous nanomaterials 2d materials Transition metal oxide/(oxy)hydroxide Electrocatalytic water splitting
原文传递
Physics of 2D Materials for Developing Smart Devices 被引量:1
8
作者 Neeraj Goel Rahul Kumar 《Nano-Micro Letters》 2025年第8期449-490,共42页
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing com... Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed. 展开更多
关键词 2d materials HETEROSTRUCTURES Smart devices Van der Waals Flexible electronics
在线阅读 下载PDF
Controlling interfacial adhesion during the transfer of large-area 2D materials:mechanisms,strategies,and research advances
9
作者 HU Rong SONG Jia +4 位作者 HUANG Wei ZHOU An-na LIN Jia-long CAO Yang HU Sheng 《新型炭材料(中英文)》 北大核心 2025年第3期553-583,共31页
Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrat... Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development. 展开更多
关键词 2d materials GRAPHENE LARGE-AREA Interfacial adhesion modulation High quality transfer
在线阅读 下载PDF
Second-Order Topological Insulators in 2D Electronic Materials
10
作者 FENG Xiao-ran NIU Cheng-wang +1 位作者 HUANG Bai-biao DAI Ying 《物理学进展》 北大核心 2025年第1期1-31,共31页
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica... Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized. 展开更多
关键词 second order topological insulator corner state 2d electronic material
在线阅读 下载PDF
Adhesion of 2D Materials: Measurement and Modulation
11
作者 Na Li Hongrong Wu +1 位作者 Changwei Sun Junhua Zhao 《Acta Mechanica Solida Sinica》 2025年第2期252-274,共23页
Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and ... Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and manipulation of 2D materials but also in the manufacture,integration and performance of the functional devices.However,the atomic thickness and limited lateral dimensions of 2D materials make the accurate measurement and modulation of their interfacial adhesion energy challenging.In this review,the recent advances in the measurement and modulation of the interfacial adhesion properties of 2D materials are systematically combed.Experimental methods and relative theoretical models for the adhesion measurement of 2D materials are summarized,with their scope of application and limitations discussed.The measured adhesion energies between 2D materials and various substrates are described in categories,where the typical adhesion modulation strategies of 2D materials are also introduced.Finally,the remaining challenges and opportunities for the interfacial adhesion measurement and modulation of 2D materials are presented.This paper provides guidance for addressing the adhesion issues in devices and systems involving 2D materials. 展开更多
关键词 2d materials AdHESION MEASUREMENT MOdULATION
原文传递
Solution-based manufacturing of 2D materials for memristive device applications
12
作者 Kijeong Nam Gwang Ya Kim +3 位作者 Dongjoon Rhee Hyesung Park Deep Jariwala Joohoon Kang 《International Journal of Extreme Manufacturing》 2025年第5期1-50,共50页
Two-dimensional (2D) materials have attracted significant attention as resistive switching materials for two-terminal non-volatile memory devices, often referred to as memristors, due to their potential for achieving ... Two-dimensional (2D) materials have attracted significant attention as resistive switching materials for two-terminal non-volatile memory devices, often referred to as memristors, due to their potential for achieving fast switching speeds and low power consumption. Their excellent gate tunability in electronic properties also enables hybrid devices combining the functionality of memory devices and transistors, with the possibility of realizing large-scale memristive crossbar arrays with high integration density. To facilitate the use of 2D materials in practical memristor applications, scalable synthesis of 2D materials with high electronic quality is critical. In addition, low-temperature integration for complementary metal oxide semiconductor (CMOS) back-end-of-line (BEOL) integration is important for embedded memory applications. Solution-based exfoliation has been actively explored as a facile, cost-effective method for the mass production and low-temperature integration of 2D materials. However, the films produced from the resulting 2D nanosheet dispersions exhibited poor electrical properties in the early stages of research, thereby hindering their use in electronic devices. Recent progress in the exfoliation process and post-processing has led to significant improvements in the electronic performance of solution-processed 2D materials, driving increased adoption of these materials in memristor research. In this review article, we provide a thorough overview of the progress and current status of memristive devices utilizing solution-processed 2D resistive switching layers. We begin by introducing the electrical characteristics and resistive switching mechanisms of memristors fabricated with conventional materials to lay the groundwork for understanding memristive behavior in 2D materials. Representative solution-based exfoliation and film formation techniques are also introduced, emphasizing the benefits of these approaches for obtaining scalable 2D material films compared to conventional methods such as mechanical exfoliation and chemical vapor deposition. Finally, we explore the electrical characteristics, resistive switching mechanisms, and applications of solution-processed 2D memristive devices, discussing their advantages and remaining challenges. 展开更多
关键词 memristor neuromorphic device 2d materials solution-based manufacturing
在线阅读 下载PDF
Measuring Mechanical Parameters of 2D Materials Based on the Bulge Test
13
作者 Xuwei Cui Wenlong Dong +3 位作者 Yuan Hou Guorui Wang Luqi Liu Zhong Zhang 《Acta Mechanica Solida Sinica》 2025年第2期218-228,共11页
The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary condition... The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary conditions dominated by weak van der Waals forces significantly impact mechanical responses.Instead of sample fracture,interfacial shear deformation and delamination become the primary deformation modes,thereby challenging the applicability of conventional bulge models.To accommodate the interfacial effect,a modified mechanical model based on the bulge test has been proposed.This review summarizes recent advancements in the bulge test to highlight the potential challenges and opportunities for future research. 展开更多
关键词 Bulge test 2d material Mechanical parameters Interfacial properties
原文传递
Recent progress in flexible sensors based on 2D materials
14
作者 Xiang Li Guancheng Wu +1 位作者 Caofeng Pan Rongrong Bao 《Journal of Semiconductors》 2025年第1期130-142,共13页
With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition... With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition.Two-dimensional(2D)materials have been widely welcomed by researchers as sensitive layers,which broadens the range and application of flexible sensors due to the advantages of their large specific surface area,tunable energy bands,controllable thickness at the atomic level,stable mechanical properties,and excellent optoelectronic properties.This review focuses on five different types of 2D materials for monitoring pressure,humidity,sound,gas,and so on,to realize the recognition and conversion of human body and environmental signals.Meanwhile,the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized. 展开更多
关键词 2d materials flexible sensors layered structure solution method
在线阅读 下载PDF
Emerging Role of 2D Materials in Photovoltaics:Efficiency Enhancement and Future Perspectives
15
作者 Ghulam Dastgeer Muhammad Wajid Zulfiqar +7 位作者 Sobia Nisar Rimsha Zulfiqar Muhammad Imran Swagata Panchanan Subhajit Dutta Kamran Akbar Alberto Vomiero Zhiming Wang 《Nano-Micro Letters》 2026年第1期843-895,共53页
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off... The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials. 展开更多
关键词 2d materials Photovoltaics Interface engineering Work function tuning Energy harvesting
在线阅读 下载PDF
Visualizing interfacial charge transfer of two-dimensional heterostructure photocatalyst for efficient CO_(2) photoreduction via in situ spectroscopies
16
作者 Jiusi Shang Heng Cao +6 位作者 Peiyu Ma Ruyang Wang Jiawei Xue Chengyuan Liu Guoping Sheng Xiaodi Zhu Jun Bao 《Journal of Energy Chemistry》 2025年第10期798-806,共9页
Photocatalytic CO_(2)reduction into value-added chemicals holds significant promise for carbon-neutral recycling and solar-to-fuel conversion.Enhancing reaction efficiency by manipulating charge transfer is a key appr... Photocatalytic CO_(2)reduction into value-added chemicals holds significant promise for carbon-neutral recycling and solar-to-fuel conversion.Enhancing reaction efficiency by manipulating charge transfer is a key approach to unlocking this potential.In this work,we construct a two-dimensional/twodimensional(2D/2D)FeSe_(2)/protonated carbon nitride(FeSe_(2)/PCN)heterostructure to promote the interfacial charge transfer dynamics,leading to a four-fold improved conversion efficiency of photocatalytic CO_(2)reduction with near 100%CO selectivity.Combining in situ X-ray photoelectron spectroscopy,in situ soft X-ray absorption spectroscopy,and femtosecond transient absorption spectroscopy,it is revealed that FeSe_(2)acts as an electron acceptor upon photoexcitation,introducing an additional electron transfer pathway from PCN to FeSe_(2)that suppresses radiative recombination and promotes charge transfer.In situ X-ray absorption fine structure spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy,and density functional theory calculation further unravel that the electron-enriched FeSe_(2)functions as the active sites for CO_(2)activation and significantly reduces the energy barrier of key intermediate COOH*formation,which is the rate-determined step for CO generation.This work underscores the importance of regulating photocarrier relaxation pathways to achieve effective spatial charge separation for promoted photocatalytic CO_(2)reduction and demonstrates the powerful functions of in situ spectroscopies in in-depth understanding of the photocatalytic mechanism. 展开更多
关键词 2d materials CO_(2)photoreduction In situ characterization Charge transfer Reaction mechanism
在线阅读 下载PDF
Influence of Defect Structures on Intervalley Scattering in Two-dimensional WSe_(2) Revealed by Double-Resonance Raman Spectroscopy
17
作者 Yueqing Zhang Yao Zhang Zhen-Chao Dong 《Chinese Journal of Chemical Physics》 2025年第1期25-36,I0055,共13页
Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can prov... Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can provide additional momentum and influence the scat-tering process involving one or two phonons,only the idealized defects without any structural details are considered in tra-ditional DRR theory.Here,the second-order DRR spectra of WSe_(2) monolayer with different types of defects are calculated involving the combinations of acoustic and optical phonons in the vicinity of K(K')and M points of the Brillouin zone.The electronic band structures are modified due to the presence of defects,and the band unfolding method is adopted to show the bending of valence and conduction bands for the defective WSe_(2) monolayers.The associ-ated phononic band structures also exhibit different changes in phonon dispersion curves,re-sulting in different DRR spectra corresponding to the different types of defects in the WSe_(2) monolayers.For example,the existence of W vacancy in the WSe_(2) monolayer would result in downshifts in vibrational frequencies and asymmetrical broadenings in linewidths for most combination modes due to the dramatic changes in contour shape of electronic valleys at K and K'.Moreover,the scattering from K to Q is found to be forbidden for the two Se vacan-cies because of the elevation of conduction band at the Q point.Our work highlights the role of defect structures in the intervalley scattering and may provide better understanding in the underlying physics of DRR process in 2D materials. 展开更多
关键词 2d materials Tungsten diselenide Intervalley scattering double-resonance Ra-man defect structure Band unfolding
在线阅读 下载PDF
Vapor phase growth of two-dimensional Cr_(2)O_(3) nanosheets with non-equilibrium charge conduction
18
作者 Jianteng Liu Dingyi Shen +9 位作者 Wei Li Qiuyin Qin Xin Li Si Wan Ying Huangfu Quanyang Tao Jia Li Bo Li Xidong Duan Ruixia Wu 《Nano Research》 2025年第11期1286-1296,共11页
Two-dimensional(2D)materials,especially 2D transition metal oxides(TMOs),have garnered significant research attention due to their unique physical and chemical properties and vast potential applications in electronics... Two-dimensional(2D)materials,especially 2D transition metal oxides(TMOs),have garnered significant research attention due to their unique physical and chemical properties and vast potential applications in electronics,optoelectronics,magneto electronics,and energy storage.However,synthesizing 2D TMOs remains a major challenge due to their non-layered lattice structure and the high temperatures required for synthesis.In this study,we report the chemical vapor deposition-based synthesis of high-quality 2D Cr_(2)O_(3) single-crystal nanosheets and investigate their structure and electrical properties.By controlling the growth temperature and carrier gas,we successfully obtained Cr_(2)O_(3) nanosheets with lateral dimensions up to 30μm and a minimum thickness of 4.7 nm.Optical studies,X-ray diffraction,atomic force microscopy,and transmission electron microscopy confirm that the resulting nanosheets are high-quality single crystals.Electrical measurements reveal that charge transport in Cr_(2)O_(3) devices is influenced by both Schottky emission and Poole-Frenkel emission,leading to a non-equilibrium charge conduction state.This systematic synthesis approach provides a reliable route for fabricating 2D TMO single crystals with controlled thickness and offers a platform for investigating charge transfer at electrode-dielectric interfaces,as well as for the design of novel electronic materials and catalysts. 展开更多
关键词 two-dimensional(2d)transition metal oxides chemical vapor deposition Cr_(2)O_(3)single crystals charge transport
原文传递
Two-dimensional MOF-based materials:Preparations and applications as electrodes in Li-ion batteries 被引量:1
19
作者 Narges Nobakht Seyyed Ahmad Etghani +1 位作者 Mohammad Hosseini Seyed Hamed Aboutalebi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期388-418,I0008,共32页
Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily a... Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily available active sites,and versatile,adaptable structures.These promising characteristics have positioned them as highly appealing alternatives for a wide range of applications in energy storage technologies,including lithium batteries.Nevertheless,the poor conductivity and limited stability of 2D MOFs have limited their real applications in electrochemical energy storage.These limitations have therefore warranted ongoing research to enhance the performance of 2D MOFs.Given the significance of 2D MOF-based materials as an emerging class of advanced materials,a multitude of strategy has been devised to address these challenges such as synthesizing 2D conductive MOFs and derivatives along with 2D MOF hybridization.One promising approach involves the use of 2D MOF derivatives,including transition metal oxides,which due to their abundant unsatu rated active metal sites and shorter diffusion paths,offer superior electrochemical performance.Additionally,by combining pristine 2D MOFs with other materials,hybrid 2D MOF materials can be created.These hybrids,with their enhanced stability and conductivity,can be directly utilized as active materials in lithium batteries.In the present review,we categorize 2D MOF-based materials into three distinct groups:pristine 2D MOFs,2D MOFderived materials,and 2D MOF hybrid materials.The synthesis methods for each group,along with their specific applications as electrode materials in lithium-ion batteries,are discussed in detail.This comprehensive review provides insights into the potential of 2D MOFs while highlighting the opportunities and challenges that are present in this evolving field. 展开更多
关键词 Li-ion batteries 2d materials 2d metal-organic frameworks Energy storage Synthesis
在线阅读 下载PDF
Electrocatalytic stability of two-dimensional materials
20
作者 Huijie Zhu Youchao Liu +3 位作者 Yongsen Wu Yushan He Yang Cao Sheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期302-320,I0006,共20页
In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the cata... In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the catalytic activity of 2D materials.However,the stability of 2D materials under catalytic conditions,as a critical issue,requires better understanding for any practical applications.This review summarizes recent progress in electrocatalytic stability of 2D materials,including four intrinsic factors that affect the stability of 2D materials:1.Weak interactions between 2D catalyst and substrate;2,delamination of 2D catalyst layers;3.metastable phase of 2D materials;4.chemistry and environmental instability of 2D materials.Meanwhile,some corresponding solutions are summarized for each factor.In addition,this review proposes potential routes for developing 2D catalytic materials with both high activity and stability. 展开更多
关键词 2d materials ELECTROCATALYST STABILITY
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部