Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Fir...Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.展开更多
Measurement precision of laser displacement sensor is subject to various factors,among which laser jitter and target tilt will directly lead to the position movement and shape variation of the laser spot,resulting in ...Measurement precision of laser displacement sensor is subject to various factors,among which laser jitter and target tilt will directly lead to the position movement and shape variation of the laser spot,resulting in displacement measurement errors,so that researchers have to do a lot of research on the spot centering algorithm to weaken the above effects,which can treat the symptoms but not the root cause.Starting from the source of the problem,this paper proposes a double focus double peak solution,which uses a reflector to change the direction of the optical path,so that the imaging spots of the designed two optical paths focus on the same CMOS,forming a double peak structure.When laser jitter or target tilt occurs,the center of the two laser spots is shifted,but they move in the same direction,while their relative position remains unchanged.Therefore,the displacement can be characterized by the relative position of the two laser spots,so that laser jitter and target tilt are suppressed from the source.However,the two spots imaged on CMOS form a non-Gaussian distributed double peak structure,so the conventional laser spot centering algorithms are no longer applicable.To this end,a double peak adaptive threshold waveform extraction method combined with grayscale gravity method is proposed for spot centering algorithm,which combines the suppression of laser jitter and target tilt from the source and the improvement of spot positioning precision which represents the displacement measurement precision,and is experimentally verified.展开更多
A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is u...A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is used for sensing. The transverse modes at 1 553.9 nm and 1 550.5 nm are LP01 and LP21 core modes, respectively, which are coupled from forward-propagating LP11 core mode. These two excitation wavelengths have opposite variation tendencies, which participate in sensing. The twist sensitivity of 0.16 dB/° from-40° to 40° is achieved. The proposed sensor has potentially used for structure monitoring in many areas.展开更多
Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing pr...Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.展开更多
The presentation shows the principle and construction of the fibre optic accelerometric sensor. The sensor element is based on the use of the tilted fibre Bragg grating (TFBG) that is imprinted to the bend insensitive...The presentation shows the principle and construction of the fibre optic accelerometric sensor. The sensor element is based on the use of the tilted fibre Bragg grating (TFBG) that is imprinted to the bend insensitive single-mode telecommunication grade fibre. The fibre section with TFBG is then coupled to the evaluation fibre circuit with the cladding-core mode conversion element that provides the core re-coupling of the optical power injected by TFBG to the fibre cladding. The cladding-core mode conversion efficiency is sensitive to the acceleration generated fibre bending. It is shown that the sensitivity of the device depends on the rate of the main core reflection versus cladding ghost reflection induced by the grating. The analysis of the core reflection power coupling on the angle of the grating tilt and the analysis of the cladding ghost reflection power coupling on the angle of the grating tilt is presented and the optimal parameters of the tilt and refractive index modulation are derived. The presentation gives the experimental results of the TFBG sensor prepared according to the optimization process.展开更多
We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SM...We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.展开更多
In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performanc...In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.展开更多
a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respe...a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.展开更多
Hydrogen,a high-density and clean energy,has been widely used in various critical applications.However,the safety risk caused by hydrogen leakage during storage and transportation is still a non-negligible issue.There...Hydrogen,a high-density and clean energy,has been widely used in various critical applications.However,the safety risk caused by hydrogen leakage during storage and transportation is still a non-negligible issue.Therefore,it is necessary to offer hydrogen sensors with fast response and high repeatability,and it will be perfect for achieving in situ monitoring over the lifecycle of hydrogen production and utilization.Here,we propose a compact optical fiber sensor with a short section of the tilted Bragg fiber grating(TFBG)inscribed in the fiber core and a palladium and tungsten trioxide(Pd/WO_(3))combined film of 40 nm thickness over the fiber surface.The TFBG excites tens of narrow cladding resonances,part of which possess refractive indexes matching that of the Pd/WO_(3) coating and providing the high sensitivity to the surrounding hydrogen concentration change.The sensor offers improved sensing characteristics,including the fast response time(less than 10 s),high repeatability(over tens of measurement),and excellent linear response(higher than 99.6%)over the 0%to 3%concentration range.展开更多
文摘Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring.
基金the Biomedical Science and Technology Support Special Project of Shanghai Science and Technology Committee(No.20S31908300)。
文摘Measurement precision of laser displacement sensor is subject to various factors,among which laser jitter and target tilt will directly lead to the position movement and shape variation of the laser spot,resulting in displacement measurement errors,so that researchers have to do a lot of research on the spot centering algorithm to weaken the above effects,which can treat the symptoms but not the root cause.Starting from the source of the problem,this paper proposes a double focus double peak solution,which uses a reflector to change the direction of the optical path,so that the imaging spots of the designed two optical paths focus on the same CMOS,forming a double peak structure.When laser jitter or target tilt occurs,the center of the two laser spots is shifted,but they move in the same direction,while their relative position remains unchanged.Therefore,the displacement can be characterized by the relative position of the two laser spots,so that laser jitter and target tilt are suppressed from the source.However,the two spots imaged on CMOS form a non-Gaussian distributed double peak structure,so the conventional laser spot centering algorithms are no longer applicable.To this end,a double peak adaptive threshold waveform extraction method combined with grayscale gravity method is proposed for spot centering algorithm,which combines the suppression of laser jitter and target tilt from the source and the improvement of spot positioning precision which represents the displacement measurement precision,and is experimentally verified.
基金supported by the National Natural Science Foundation of China(Nos.11674177,61775107,61835006 and 11704283)the Natural Science Foundation of Tianjin in China(No.16JCZDJC31000)the Scientific Research Planning and Development Project of Handan in China(No.1621203035)
文摘A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is used for sensing. The transverse modes at 1 553.9 nm and 1 550.5 nm are LP01 and LP21 core modes, respectively, which are coupled from forward-propagating LP11 core mode. These two excitation wavelengths have opposite variation tendencies, which participate in sensing. The twist sensitivity of 0.16 dB/° from-40° to 40° is achieved. The proposed sensor has potentially used for structure monitoring in many areas.
基金Supported by National Natural Science Foundation of China(Grant No.51435006)
文摘Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
文摘The presentation shows the principle and construction of the fibre optic accelerometric sensor. The sensor element is based on the use of the tilted fibre Bragg grating (TFBG) that is imprinted to the bend insensitive single-mode telecommunication grade fibre. The fibre section with TFBG is then coupled to the evaluation fibre circuit with the cladding-core mode conversion element that provides the core re-coupling of the optical power injected by TFBG to the fibre cladding. The cladding-core mode conversion efficiency is sensitive to the acceleration generated fibre bending. It is shown that the sensitivity of the device depends on the rate of the main core reflection versus cladding ghost reflection induced by the grating. The analysis of the core reflection power coupling on the angle of the grating tilt and the analysis of the cladding ghost reflection power coupling on the angle of the grating tilt is presented and the optimal parameters of the tilt and refractive index modulation are derived. The presentation gives the experimental results of the TFBG sensor prepared according to the optimization process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775182 and 61505165)Marie Sktodowska-Curie Individual Fellowships in the European Union’s Horizon 2020 Research and Innovation Programme(Grant No.660648)
文摘We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.
文摘In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.
基金supported by the National 863 Program under Grant No. 2006AA01Z217the National Natural Science Foundation of China under Grant No. 60736039 and 60572018the Technological Tackle Key Problem Project of Tianjin under Grant No. 07ZCKFGX00200.
文摘a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.
基金funding from the Program of Marine Economy Development Special Fund under the Department of Natural Resources of Guangdong Province,China[Grant No.GDNRC[2023]23].
文摘Hydrogen,a high-density and clean energy,has been widely used in various critical applications.However,the safety risk caused by hydrogen leakage during storage and transportation is still a non-negligible issue.Therefore,it is necessary to offer hydrogen sensors with fast response and high repeatability,and it will be perfect for achieving in situ monitoring over the lifecycle of hydrogen production and utilization.Here,we propose a compact optical fiber sensor with a short section of the tilted Bragg fiber grating(TFBG)inscribed in the fiber core and a palladium and tungsten trioxide(Pd/WO_(3))combined film of 40 nm thickness over the fiber surface.The TFBG excites tens of narrow cladding resonances,part of which possess refractive indexes matching that of the Pd/WO_(3) coating and providing the high sensitivity to the surrounding hydrogen concentration change.The sensor offers improved sensing characteristics,including the fast response time(less than 10 s),high repeatability(over tens of measurement),and excellent linear response(higher than 99.6%)over the 0%to 3%concentration range.