With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors ...With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average.展开更多
文摘目的 为了满足羽毛球教练针对球员单打视频中的动作进行辅助分析,以及用户欣赏每种击球动作的视频集锦等多元化需求,提出一种在提取的羽毛球视频片段中对控球球员动作进行时域定位和分类的方法。方法 在羽毛球视频片段上基于姿态估计方法检测球员执拍手臂,并根据手臂的挥动幅度变化特点定位击球动作时域,根据定位结果生成元视频。将通道—空间注意力机制引入时序分段网络,并通过网络训练实现对羽毛球动作的分类,分类结果包括正手击球、反手击球、头顶击球和挑球4种常见类型,同时基于图像形态学处理方法将头顶击球判别为高远球或杀球。结果 实验结果表明,本文对羽毛球视频片段中动作时域定位的交并比(intersection over union, IoU)值为82.6%,对羽毛球每种动作类别预测的AUC(area under curve)值均在0.98以上,平均召回率与平均查准率分别为91.2%和91.6%,能够有效针对羽毛球视频片段中的击球动作进行定位与分类,较好地实现对羽毛球动作的识别。结论 本文提出的基于羽毛球视频片段的动作识别方法,兼顾了羽毛球动作时域定位和动作分类,使羽毛球动作识别过程更为智能,对体育视频分析提供了重要的应用价值。
基金supported by the National Natural Science Foundation of China(No.62006135)the Natural Science Foundation of Shandong Province(No.ZR2020QF116)。
文摘With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average.