期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Dynamic Hand Gesture Recognition Based on Short-Term Sampling Neural Networks 被引量:14
1
作者 Wenjin Zhang Jiacun Wang Fangping Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期110-120,共11页
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo... Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures. 展开更多
关键词 convolutional neural network(convnet) hand gesture recognition long short-term memory(LSTM)network short-term sampling transfer learning
在线阅读 下载PDF
Novel method for the recognition of Jinnan cattle action using bottleneck attention enhanced two-stream neural network
2
作者 Wangli Hao Meng Han +4 位作者 Kai Zhang Li Zhang Wangbao Hao Fuzhong Li Zhenyu Liu 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第3期203-210,共8页
Effective and accurate action recognition is essential to the intelligent breeding of the Jinnan cattle.However,there are still several challenges in the current Jinnan cattle action recognition.Traditional methods ar... Effective and accurate action recognition is essential to the intelligent breeding of the Jinnan cattle.However,there are still several challenges in the current Jinnan cattle action recognition.Traditional methods are based on manual characteristics and low recognition accuracy.This study is aimed at the efficient and accurate development of Jinnan cattle action recognition methods to overcome existing problems and support intelligent breeding.The acquired data from the previous methods contain a lot of noise,which will cause individual cattle to have excessive behaviors due to unsuitability.Concerning the high labor costs,low efficiency,and low model accuracy of the above approaches,this study developed a bottleneck attention-enhanced two-stream(BATS)Jinnan cattle action recognition method.It primarily comprises a Spatial Stream Subnetwork,a Temporal Stream Subnetwork,and a Bottleneck Attention Module.It can capture the spatial-channel dependencies in RGB and optical flow two branches respectively,so as to extract richer and more robust features.Finally,the decision of the two branches can be fused to gain improved cattle action recognition performance.Compared with the traditional methods,the model proposed in this study has achieved state-of-the-art recognition performance,and the accuracy of motion recognition was 96.53%,which was 4.60%higher than other models.This method significantly improves the efficiency and accuracy of behavior recognition and provides an important research foundation and direction for the development of higher-level behavior analysis models in the future development of smart animal husbandry. 展开更多
关键词 Jinnan cattle action recognition bottleneck attention two-stream neural network
原文传递
基于深度学习的行为识别算法综述 被引量:28
3
作者 赫磊 邵展鹏 +1 位作者 张剑华 周小龙 《计算机科学》 CSCD 北大核心 2020年第S01期139-147,共9页
行为识别是计算机视觉领域的基本问题之一,基于深度学习的行为识别算法是当前行为识别的主流算法。在已有的研究中,传统特征提取方法一般是通过人工观察和设计,手动设计出能够表征视频动作的特征。然而,在手工特征表达的基础上构建复杂... 行为识别是计算机视觉领域的基本问题之一,基于深度学习的行为识别算法是当前行为识别的主流算法。在已有的研究中,传统特征提取方法一般是通过人工观察和设计,手动设计出能够表征视频动作的特征。然而,在手工特征表达的基础上构建复杂分类模型的方法已经不能适应高识别精度和应用性的要求,而深度学习的引入为行为识别带来了新的发展方向。文中主要综述了基于深度学习的行为识别算法,首先介绍了行为识别的研究背景和意义,并分别对行为识别的传统学习方法和深度学习方法进行了介绍;然后对深度学习下的算法模型结构进行分类介绍,包括Two-Stream、3D-ConvNet、融合CNN-LSTM 3种算法模型结构;最后介绍了目前常用的公开验证数据集,并主要针对基于两种数据模态的识别算法进行了横向比较,一种是基于RGB视频的UCF101和HMDB51数据集,一种是基于人体骨架序列视频的NTU RGB+D数据集。实验结果表明:深度学习方法已经取得了很大的进步,卷积神经网络的应用极大地促进了行为识别算法的发展,逐步替代了基于手工提取特征的传统方法,尤其采用了卷积神经网络算法之后在行为数据集上的准确率有了显著提高。对于RGB视频而言,Two-Stream和3DConvNet是算法模型结构的主流,对于骨架序列视频而言,Two-Stream和融合时空图模型是算法模型结构的主流。 展开更多
关键词 行为识别 深度学习 卷积神经网络 循环神经网络 3D卷积
在线阅读 下载PDF
基于双流非局部残差网络的行为识别方法 被引量:7
4
作者 周云 陈淑荣 《计算机应用》 CSCD 北大核心 2020年第8期2236-2240,共5页
针对传统卷积神经网络(CNN)对人体行为动作仅能提取局部特征易导致相似行为动作识别准确率不高的问题,提出了一种基于双流非局部残差网络(NL-ResNet)的行为识别方法。首先提取视频的RGB帧和密集光流图,分别作为空间流和时间流网络的输入... 针对传统卷积神经网络(CNN)对人体行为动作仅能提取局部特征易导致相似行为动作识别准确率不高的问题,提出了一种基于双流非局部残差网络(NL-ResNet)的行为识别方法。首先提取视频的RGB帧和密集光流图,分别作为空间流和时间流网络的输入,并通过角落裁剪和多尺度相结合的预处理方法进行数据增强;其次分别利用残差网络的残差块提取视频的局部表观特征和运动特征,再通过在残差块之后接入的非局部CNN模块提取视频的全局信息,实现网络局部特征和全局特征的交叉提取;最后将两个分支网络分别通过A-softmax损失函数进行更精细的分类,并输出加权融合后的识别结果。该方法能充分利用局部和全局特征提高模型的表征能力。在UCF101数据集上,NL-ResNet取得了93.5%的识别精度,与原始双流网络相比提高了5.5个百分点。实验结果表明,所提模型能更好地提取行为特征,有效提高行为识别的准确率。 展开更多
关键词 行为识别 双流卷积神经网络 非局部 特征提取 A-softmax
在线阅读 下载PDF
Behavior Recognition of the Elderly in Indoor Environment Based on Feature Fusion of Wi-Fi Perception and Videos 被引量:3
5
作者 Yuebin Song Chunling Fan 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期142-155,共14页
With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors ... With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average. 展开更多
关键词 human behavior recognition two-stream convolution neural network channel status information feature fusion support vector machine(SVM)
在线阅读 下载PDF
多特征融合的行为识别模型 被引量:6
6
作者 谭等泰 李世超 +1 位作者 常文文 李登楼 《中国图象图形学报》 CSCD 北大核心 2020年第12期2541-2552,共12页
目的视频行为识别和理解是智能监控、人机交互和虚拟现实等诸多应用中的一项基础技术,由于视频时空结构的复杂性,以及视频内容的多样性,当前行为识别仍面临如何高效提取视频的时域表示、如何高效提取视频特征并在时间轴上建模的难点问... 目的视频行为识别和理解是智能监控、人机交互和虚拟现实等诸多应用中的一项基础技术,由于视频时空结构的复杂性,以及视频内容的多样性,当前行为识别仍面临如何高效提取视频的时域表示、如何高效提取视频特征并在时间轴上建模的难点问题。针对这些难点,提出了一种多特征融合的行为识别模型。方法首先,提取视频中高频信息和低频信息,采用本文提出的两帧融合算法和三帧融合算法压缩原始数据,保留原始视频绝大多数信息,增强原始数据集,更好地表达原始行为信息。其次,设计双路特征提取网络,一路将融合数据正向输入网络提取细节特征,另一路将融合数据逆向输入网络提取整体特征,接着将两路特征加权融合,每一路特征提取网络均使用通用视频描述符——3D ConvNets(3D convolutional neural networks)结构。然后,采用BiConvLSTM(bidirectional convolutional long short-term memory network)网络对融合特征进一步提取局部信息并在时间轴上建模,解决视频序列中某些行为间隔相对较长的问题。最后,利用Softmax最大化似然函数分类行为动作。结果为了验证本文算法的有效性,在公开的行为识别数据集UCF101和HMDB51上,采用5折交叉验证的方式进行整体测试与分析,然后针对每类行为动作进行比较统计。结果表明,本文算法在两个验证集上的平均准确率分别为96.47%和80.03%。结论通过与目前主流行为识别模型比较,本文提出的多特征模型获得了最高的识别精度,具有通用、紧凑、简单和高效的特点。 展开更多
关键词 行为识别 双路特征提取网络 3维卷积神经网络 双向卷积长短期记忆网络 加权融合 高频特征 低频特征
原文传递
基于残差融合网络的定量磁敏感图像与T1加权图像配准 被引量:1
7
作者 王毅 田梨梨 +1 位作者 程欣宇 王丽会 《计算机系统应用》 2022年第8期46-54,共9页
医学图像配准对医学图像处理和分析至关重要,由于定量磁敏感图像(quantitative susceptibility mapping,QSM)与T1加权图像的灰度、纹理等信息存在较大的差异,现有的医学图像配准算法难以高效精确地完成两者配准.因此,本文提出了一个基... 医学图像配准对医学图像处理和分析至关重要,由于定量磁敏感图像(quantitative susceptibility mapping,QSM)与T1加权图像的灰度、纹理等信息存在较大的差异,现有的医学图像配准算法难以高效精确地完成两者配准.因此,本文提出了一个基于残差融合的无监督深度学习配准模型RF-RegNet(residual fusion registration network,RF-RegNet).RF-RegNet由编解码器、重采样器以及上下文自相似特征提取器3部分组成.编解码器用于提取待配准图像对的特征和预测两者的位移矢量场(displacement vector field,DVF),重采样器根据估计的DVF对浮动QSM图像重采样,上下文自相似特征提取器分别用于提取参考T1加权图像和重采样后的QSM图像的上下文自相似特征并计算两者的平均绝对误差(mean absolute error,MAE)以驱动卷积神经网络(convolutional neural network,ConvNet)学习.实验结果表明本文提出的方法显著地提高了QSM图像与T1加权图像的配准精度,满足临床的配准需求. 展开更多
关键词 卷积神经网络 医学图像配准 QSM 残差融合 图像处理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部