The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the p...We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.展开更多
By using the method of upper and lower solution, some conditions of the existence of solutions of nonlinear two-point boundary value problems for 4nth-order nonlinear differential equation are studied.
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′...By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.展开更多
The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples ...The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.展开更多
In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, w...In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.展开更多
A class of second-order two-point boundary value problem on a measure chain was considered. Under some suitable conditions, by using the Leggett-Williams fixed point theorem in an appropriate cone, the existence of at...A class of second-order two-point boundary value problem on a measure chain was considered. Under some suitable conditions, by using the Leggett-Williams fixed point theorem in an appropriate cone, the existence of at least three positive solutions to this nonlinear problem was obtained.展开更多
We consider the nonlinear boundary value problems for elliptic partial differential equations and using a maximum principle for this problem we show uniqueness and continuous dependence on data. We use the strong vers...We consider the nonlinear boundary value problems for elliptic partial differential equations and using a maximum principle for this problem we show uniqueness and continuous dependence on data. We use the strong version of the maximum principle to prove that all solutions of two-point BVP are positives and we also show a numerical example by applying finite difference method for a two-point BVP in one dimension based on discrete version of the maximum principle.展开更多
We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by ut...We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem. And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theorem.展开更多
In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform i...In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution.展开更多
In this paper, we discuss the existence of solution of a nonlinear two-point boundary value problem with a positive parameter Q arising in the study of surfacetension-induced flows of a liquid metal or semiconductor. ...In this paper, we discuss the existence of solution of a nonlinear two-point boundary value problem with a positive parameter Q arising in the study of surfacetension-induced flows of a liquid metal or semiconductor. By applying the Schauder's fixed-point theorem, we prove that the problem admits a solution for 0 ≤ Q ≤ 14.306.It improves the result of 0 ≤ Q < 1 in [2] and 0 ≤ Q ≤ 13.213 in [3].展开更多
By a simple application of a new three functionals fixed point theorem, sufficient conditions axe obtained to guarantee the existence of at least three positive solutions for p-Laplacian equation: (φp(u′))′ +...By a simple application of a new three functionals fixed point theorem, sufficient conditions axe obtained to guarantee the existence of at least three positive solutions for p-Laplacian equation: (φp(u′))′ + α(t)f(t,u(t)) = 0 subject to nonlinear boundary value conditions. An example is presented to illustrate the theory.展开更多
By using the Leray-Schauder degree theory we give the concrete sufficient conditions of the existence and uniqueness of solutions of a class two point boundary value problems for fourth-order nonlinear differential eq...By using the Leray-Schauder degree theory we give the concrete sufficient conditions of the existence and uniqueness of solutions of a class two point boundary value problems for fourth-order nonlinear differential equation.展开更多
The existence, multiplicity and uniqueness of positive solutions of a third order two point boundary value problem are discussed with the help of two fixed point theorems in cones, respectively.
A two-point boundary value problem with a non-negative parameter Q arising inthe study of surface tension induced flow of a liquid metal or semiconductor is studied. We provethat the problem has at least one solution ...A two-point boundary value problem with a non-negative parameter Q arising inthe study of surface tension induced flow of a liquid metal or semiconductor is studied. We provethat the problem has at least one solution for Q ≥ 0. This improves a recent result that theproblem has at least one solution for 0 ≤ Q ≤ 13.21.展开更多
A numerical treatment for self-adjoint singularly perturbed second-order two-point boundary value problems using trigonometric quintic B-splines is presented,which depend on different engineering applications.The meth...A numerical treatment for self-adjoint singularly perturbed second-order two-point boundary value problems using trigonometric quintic B-splines is presented,which depend on different engineering applications.The method is found to have a truncation error of O(h 6)and converges to the exact solution at O(h 4).The numerical examples show that our method is very effective and the maximum absolute error is acceptable.展开更多
In this paper, we study the nonlinear singular boundary value problems in Banach spaces:-x=f(t,x),t∈(0,1),a1x(0)-a2x'(0)=θ,b1x(1)+b2x'(1)=θ.where θ denotes the zero element of E, E is a real Banach...In this paper, we study the nonlinear singular boundary value problems in Banach spaces:-x=f(t,x),t∈(0,1),a1x(0)-a2x'(0)=θ,b1x(1)+b2x'(1)=θ.where θ denotes the zero element of E, E is a real Banach space, and f (t, x) is allowed to be singular at both end point t = 0 and t = 1. We show the existence of at least two positive solutions of this problem.展开更多
In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining fu...In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining full superconvergence uniformly at all nodal points, we introduce local mesh refinements. Then we extend these results to a class of nonlinear problems. Finally, we present some numerical results which confirm our theoretical conclusions.展开更多
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
基金The Russian Foundation for Basic Research(RFBR)Grant No.19-01-00019.
文摘We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.
文摘By using the method of upper and lower solution, some conditions of the existence of solutions of nonlinear two-point boundary value problems for 4nth-order nonlinear differential equation are studied.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
文摘By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.
基金The Postdoctoral Science Research Foundation of Zhengzhou University.
文摘The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.
基金The Project was supported by National Natural Science Foundation of China
文摘In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.
文摘A class of second-order two-point boundary value problem on a measure chain was considered. Under some suitable conditions, by using the Leggett-Williams fixed point theorem in an appropriate cone, the existence of at least three positive solutions to this nonlinear problem was obtained.
文摘We consider the nonlinear boundary value problems for elliptic partial differential equations and using a maximum principle for this problem we show uniqueness and continuous dependence on data. We use the strong version of the maximum principle to prove that all solutions of two-point BVP are positives and we also show a numerical example by applying finite difference method for a two-point BVP in one dimension based on discrete version of the maximum principle.
文摘We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem. And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theorem.
文摘In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution.
基金The work was supported by National Natural Science Foundation(Grant No. 10471129) of China
文摘In this paper, we discuss the existence of solution of a nonlinear two-point boundary value problem with a positive parameter Q arising in the study of surfacetension-induced flows of a liquid metal or semiconductor. By applying the Schauder's fixed-point theorem, we prove that the problem admits a solution for 0 ≤ Q ≤ 14.306.It improves the result of 0 ≤ Q < 1 in [2] and 0 ≤ Q ≤ 13.213 in [3].
基金the National Natural Science Foundation of China (10371006)
文摘By a simple application of a new three functionals fixed point theorem, sufficient conditions axe obtained to guarantee the existence of at least three positive solutions for p-Laplacian equation: (φp(u′))′ + α(t)f(t,u(t)) = 0 subject to nonlinear boundary value conditions. An example is presented to illustrate the theory.
文摘By using the Leray-Schauder degree theory we give the concrete sufficient conditions of the existence and uniqueness of solutions of a class two point boundary value problems for fourth-order nonlinear differential equation.
文摘The existence, multiplicity and uniqueness of positive solutions of a third order two point boundary value problem are discussed with the help of two fixed point theorems in cones, respectively.
基金Supported by the Foundation of postdoctor of Huazhong University of Science and Technology
文摘A two-point boundary value problem with a non-negative parameter Q arising inthe study of surface tension induced flow of a liquid metal or semiconductor is studied. We provethat the problem has at least one solution for Q ≥ 0. This improves a recent result that theproblem has at least one solution for 0 ≤ Q ≤ 13.21.
文摘A numerical treatment for self-adjoint singularly perturbed second-order two-point boundary value problems using trigonometric quintic B-splines is presented,which depend on different engineering applications.The method is found to have a truncation error of O(h 6)and converges to the exact solution at O(h 4).The numerical examples show that our method is very effective and the maximum absolute error is acceptable.
基金the "Qing-Lan" Project of Jiangsu Education Committee and the Natural Science Foundation of Jiangsu Education Committee, China (02KJD460011)
文摘In this paper, we study the nonlinear singular boundary value problems in Banach spaces:-x=f(t,x),t∈(0,1),a1x(0)-a2x'(0)=θ,b1x(1)+b2x'(1)=θ.where θ denotes the zero element of E, E is a real Banach space, and f (t, x) is allowed to be singular at both end point t = 0 and t = 1. We show the existence of at least two positive solutions of this problem.
基金Supported by the Scientific Research Foundation for the Doctor,Nanjing University of Aeronautics and Astronautics(No.1008-907359)
文摘In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining full superconvergence uniformly at all nodal points, we introduce local mesh refinements. Then we extend these results to a class of nonlinear problems. Finally, we present some numerical results which confirm our theoretical conclusions.