In this paper, we have proposed estimators of finite population mean using generalized Ratio- cum-product estimator for two-Phase sampling using multi-auxiliary variables under full, partial and no information cases a...In this paper, we have proposed estimators of finite population mean using generalized Ratio- cum-product estimator for two-Phase sampling using multi-auxiliary variables under full, partial and no information cases and investigated their finite sample properties. An empirical study is given to compare the performance of the proposed estimators with the existing estimators that utilize auxiliary variable(s) for finite population mean. It has been found that the generalized Ra-tio-cum-product estimator in full information case using multiple auxiliary variables is more efficient than mean per unit, ratio and product estimator using one auxiliary variable, ratio and product estimator using multiple auxiliary variable and ratio-cum-product estimators in both partial and no information case in two phase sampling. A generalized Ratio-cum-product estimator in partial information case is more efficient than Generalized Ratio-cum-product estimator in No information case.展开更多
This paper is an extension of Hanif, Hamad and Shahbaz estimator [1] for two-phase sampling. The aim of this paper is to develop a regression type estimator with two auxiliary variables for two-phase sampling when we ...This paper is an extension of Hanif, Hamad and Shahbaz estimator [1] for two-phase sampling. The aim of this paper is to develop a regression type estimator with two auxiliary variables for two-phase sampling when we don’t have any type of information about auxiliary variables at population level. To avoid multi-collinearity, it is assumed that both auxiliary variables have minimum correlation. Mean square error and bias of proposed estimator in two-phase sampling is derived. Mean square error of proposed estimator shows an improvement over other well known estimators under the same case.展开更多
In this paper, we have proposed three classes of ratio-cum-product estimators for estimating population mean of study variable for two-phase sampling using multi-auxiliary attributes for full information, partial info...In this paper, we have proposed three classes of ratio-cum-product estimators for estimating population mean of study variable for two-phase sampling using multi-auxiliary attributes for full information, partial information and no information cases. The expressions for mean square errors are derived. An empirical study is given to compare the performance of the estimator with the existing estimator that utilizes auxiliary attribute or multiple auxiliary attributes. The ratio-cum-product estimator in two-phase sampling for full information case has been found to be more efficient than existing estimators and also ratio-cum-product estimator in two-phase sampling for both partial and no information case. Finally, ratio-cum-product estimator in two-phase sampling for partial information case has been found to be more efficient than ratio-cum-product estimator in two-phase sampling for no information case.展开更多
In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample propert...In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample properties in full, partial and no information cases. An empirical study using natural data is given to compare the performance of the proposed estimators with the existing estimators that utilizes either auxiliary variables or attributes or both for finite population mean. The Mixture Regression estimators in full information case using multiple auxiliary variables and attributes are more efficient than mean per unit, Regression estimator using one auxiliary variable or attribute, Regression estimator using multiple auxiliary variable or attributes and Mixture Regression estimators in both partial and no information case in two-phase sampling. A Mixture Regression estimator in partial information case is more efficient than Mixture Regression estimators in no information case.展开更多
In this paper, we have proposed three classes of mixture ratio estimators for estimating population mean by using information on auxiliary variables and attributes simultaneously in two-phase sampling under full, part...In this paper, we have proposed three classes of mixture ratio estimators for estimating population mean by using information on auxiliary variables and attributes simultaneously in two-phase sampling under full, partial and no information cases and analyzed the properties of the estimators. A simulated study was carried out to compare the performance of the proposed estimators with the existing estimators of finite population mean. It has been found that the mixture ratio estimator in full information case using multiple auxiliary variables and attributes is more efficient than mean per unit, ratio estimator using one auxiliary variable and one attribute, ratio estimator using multiple auxiliary variable and multiple auxiliary attributes and mixture ratio estimators in both partial and no information case in two-phase sampling. A mixture ratio estimator in partial information case is more efficient than mixture ratio estimators in no information case.展开更多
This paper presents an efficient class of estimators for estimating the population mean of the variate under study in two-phase sampling using information on several auxiliary variates.The expressions for bias and mea...This paper presents an efficient class of estimators for estimating the population mean of the variate under study in two-phase sampling using information on several auxiliary variates.The expressions for bias and mean square error(MSE)of the proposed class have been obtained using Taylor series method.In addition,the minimum attainableMSE of the proposed class is obtained to the first order of approximation.The proposed class encompasses a wide range of estimators of the sampling literature.Efficiency comparison has been made for demonstrating the performance of the proposed class.An attempt has been made to find optimum sample sizes under a known fixed cost function.Numerical illustrations are given in support of theoretical findings.展开更多
This paper considers the problem of estimating the finite population total in two-phase sampling when some information on auxiliary variable is available. The authors employ an informationtheoretic approach which make...This paper considers the problem of estimating the finite population total in two-phase sampling when some information on auxiliary variable is available. The authors employ an informationtheoretic approach which makes use of effective distance between the estimated probabilities and the empirical frequencies. It is shown that the proposed cross-entropy minimization estimator is more efficient than the usual estimator and has some desirable large sample properties. With some necessary modifications, the method can be applied to two-phase sampling for stratification and non-response. A simulation study is presented to assess the finite sample performance of the proposed estimator.展开更多
One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object...One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.展开更多
Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band lim...Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.展开更多
Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived chall...Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.展开更多
Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological ...Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological conditions.Traditional sampling strategies commonly used in landslide susceptibility models can lead to a misrepresentation of the distribution of negative samples,causing a deviation from actual geological conditions.This,in turn,negatively affects the discriminative ability and generalization performance of the models.To address this issue,we propose a novel approach for selecting negative samples to enhance the quality of machine learning models.We choose the Liangshan Yi Autonomous Prefecture,located in southwestern Sichuan,China,as the case study.This area,characterized by complex terrain,frequent tectonic activities,and steep slope erosion,experiences recurrent landslides,making it an ideal setting for validating our proposed method.We calculate the contribution values of environmental factors using the relief algorithm to construct the feature space,apply the Target Space Exteriorization Sampling(TSES)method to select negative samples,calculate landslide probability values by Random Forest(RF)modeling,and then create regional landslide susceptibility maps.We evaluate the performance of the RF model optimized by the Environmental Factor Selection-based TSES(EFSTSES)method using standard performance metrics.The results indicated that the model achieved an accuracy(ACC)of 0.962,precision(PRE)of 0.961,and an area under the curve(AUC)of 0.962.These findings demonstrate that the EFSTSES-based model effectively mitigates the negative sample imbalance issue,enhances the differentiation between landslide and non-landslide samples,and reduces misclassification,particularly in geologically complex areas.These improvements offer valuable insights for disaster prevention,land use planning,and risk mitigation strategies.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The e...In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.展开更多
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec...Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.展开更多
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan...With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.展开更多
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine m...The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.展开更多
As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it ...As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop.展开更多
A comprehensive fishery-independent survey generally incorporates various specialized surveys and integrates different survey objectives to maximize benefits while accounting for cost limitations.It is important to ev...A comprehensive fishery-independent survey generally incorporates various specialized surveys and integrates different survey objectives to maximize benefits while accounting for cost limitations.It is important to evaluate the adaptability of the comprehensive survey for different taxon to get the optimal design.However,the validity and adaptability of ichthyoplankton sampling incorporated in a comprehensive fishery-independent survey program in estimating abundance of ichthyoplankton species is little known.This study included ichthyoplankton sampling in an integrated survey and assessed the appropriateness of survey design.The Kriging interpolation based on Gaussian models was used to estimate the values at unsurveyed locations based on the original ichthyoplankton survey data in the Haizhou Bay as the“true”values.The sampling performances of the ongoing stratified random sampling(StRS),simple random sampling(SRS),cluster sampling(CS),hexagonal systematic sampling(SYS h),and regular systematic sampling(SYS r)with different sample sizes in estimating ichthyoplankton abundance were compared in relative estimation error(REE),relative bias(RB),and coefficient of variation(CV)by computer simulation.The ongoing StRS performed better than CS and SRS,but not as good as the two systematic sampling methods,and the current sample size in StRS design was insufficient to estimate ichthyoplankton abundance.The average REE values(meanREE)were significantly smaller in two systematic sampling designs than those in other three sampling designs,and the two systematic sampling designs could maintain good inter-annual stability of sampling performances.It is suggested that incorporating ichthyoplankton survey directly into stratified random fishery-independent surveys could not achieve the desired level of accuracy for survey objectives,but the accuracy can be improved by setting additional stations.The assessment framework presented in this study serves as a reference for evaluating the adaptability of integrated surveys to different objectives in other waters.展开更多
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me...Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.展开更多
文摘In this paper, we have proposed estimators of finite population mean using generalized Ratio- cum-product estimator for two-Phase sampling using multi-auxiliary variables under full, partial and no information cases and investigated their finite sample properties. An empirical study is given to compare the performance of the proposed estimators with the existing estimators that utilize auxiliary variable(s) for finite population mean. It has been found that the generalized Ra-tio-cum-product estimator in full information case using multiple auxiliary variables is more efficient than mean per unit, ratio and product estimator using one auxiliary variable, ratio and product estimator using multiple auxiliary variable and ratio-cum-product estimators in both partial and no information case in two phase sampling. A generalized Ratio-cum-product estimator in partial information case is more efficient than Generalized Ratio-cum-product estimator in No information case.
文摘This paper is an extension of Hanif, Hamad and Shahbaz estimator [1] for two-phase sampling. The aim of this paper is to develop a regression type estimator with two auxiliary variables for two-phase sampling when we don’t have any type of information about auxiliary variables at population level. To avoid multi-collinearity, it is assumed that both auxiliary variables have minimum correlation. Mean square error and bias of proposed estimator in two-phase sampling is derived. Mean square error of proposed estimator shows an improvement over other well known estimators under the same case.
文摘In this paper, we have proposed three classes of ratio-cum-product estimators for estimating population mean of study variable for two-phase sampling using multi-auxiliary attributes for full information, partial information and no information cases. The expressions for mean square errors are derived. An empirical study is given to compare the performance of the estimator with the existing estimator that utilizes auxiliary attribute or multiple auxiliary attributes. The ratio-cum-product estimator in two-phase sampling for full information case has been found to be more efficient than existing estimators and also ratio-cum-product estimator in two-phase sampling for both partial and no information case. Finally, ratio-cum-product estimator in two-phase sampling for partial information case has been found to be more efficient than ratio-cum-product estimator in two-phase sampling for no information case.
文摘In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample properties in full, partial and no information cases. An empirical study using natural data is given to compare the performance of the proposed estimators with the existing estimators that utilizes either auxiliary variables or attributes or both for finite population mean. The Mixture Regression estimators in full information case using multiple auxiliary variables and attributes are more efficient than mean per unit, Regression estimator using one auxiliary variable or attribute, Regression estimator using multiple auxiliary variable or attributes and Mixture Regression estimators in both partial and no information case in two-phase sampling. A Mixture Regression estimator in partial information case is more efficient than Mixture Regression estimators in no information case.
文摘In this paper, we have proposed three classes of mixture ratio estimators for estimating population mean by using information on auxiliary variables and attributes simultaneously in two-phase sampling under full, partial and no information cases and analyzed the properties of the estimators. A simulated study was carried out to compare the performance of the proposed estimators with the existing estimators of finite population mean. It has been found that the mixture ratio estimator in full information case using multiple auxiliary variables and attributes is more efficient than mean per unit, ratio estimator using one auxiliary variable and one attribute, ratio estimator using multiple auxiliary variable and multiple auxiliary attributes and mixture ratio estimators in both partial and no information case in two-phase sampling. A mixture ratio estimator in partial information case is more efficient than mixture ratio estimators in no information case.
文摘This paper presents an efficient class of estimators for estimating the population mean of the variate under study in two-phase sampling using information on several auxiliary variates.The expressions for bias and mean square error(MSE)of the proposed class have been obtained using Taylor series method.In addition,the minimum attainableMSE of the proposed class is obtained to the first order of approximation.The proposed class encompasses a wide range of estimators of the sampling literature.Efficiency comparison has been made for demonstrating the performance of the proposed class.An attempt has been made to find optimum sample sizes under a known fixed cost function.Numerical illustrations are given in support of theoretical findings.
基金supported by the National Natural Science Foundation of China under Grant No.61070236
文摘This paper considers the problem of estimating the finite population total in two-phase sampling when some information on auxiliary variable is available. The authors employ an informationtheoretic approach which makes use of effective distance between the estimated probabilities and the empirical frequencies. It is shown that the proposed cross-entropy minimization estimator is more efficient than the usual estimator and has some desirable large sample properties. With some necessary modifications, the method can be applied to two-phase sampling for stratification and non-response. A simulation study is presented to assess the finite sample performance of the proposed estimator.
基金Supported by the National Natural Science Foundation of China(42474239,41204128)China National Space Administration(Pre-research project on Civil Aerospace Technologies No.D010301)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA17010303)。
文摘One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.
基金Supported by the National Natural Science Foundation of China(12064028)Jiangxi Provincial Natural Science Foundation(20232BAB201045).
文摘Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.
文摘Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.
基金supported by Natural Science Research Project of Anhui Educational Committee(2023AH030041)National Natural Science Foundation of China(42277136)Anhui Province Young and Middle-aged Teacher Training Action Project(DTR2023018).
文摘Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological conditions.Traditional sampling strategies commonly used in landslide susceptibility models can lead to a misrepresentation of the distribution of negative samples,causing a deviation from actual geological conditions.This,in turn,negatively affects the discriminative ability and generalization performance of the models.To address this issue,we propose a novel approach for selecting negative samples to enhance the quality of machine learning models.We choose the Liangshan Yi Autonomous Prefecture,located in southwestern Sichuan,China,as the case study.This area,characterized by complex terrain,frequent tectonic activities,and steep slope erosion,experiences recurrent landslides,making it an ideal setting for validating our proposed method.We calculate the contribution values of environmental factors using the relief algorithm to construct the feature space,apply the Target Space Exteriorization Sampling(TSES)method to select negative samples,calculate landslide probability values by Random Forest(RF)modeling,and then create regional landslide susceptibility maps.We evaluate the performance of the RF model optimized by the Environmental Factor Selection-based TSES(EFSTSES)method using standard performance metrics.The results indicated that the model achieved an accuracy(ACC)of 0.962,precision(PRE)of 0.961,and an area under the curve(AUC)of 0.962.These findings demonstrate that the EFSTSES-based model effectively mitigates the negative sample imbalance issue,enhances the differentiation between landslide and non-landslide samples,and reduces misclassification,particularly in geologically complex areas.These improvements offer valuable insights for disaster prevention,land use planning,and risk mitigation strategies.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金supported by the National Natural Science Foundation of China (Grant No. 12202204)the Natural Science Foundation of Jiangsu Province (Grant No. BK20220953)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science and Technology Association's Young Talent Nurturing Program of Jiangsu Province (Grant No. JSTJ-2024-004)
文摘In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.
基金supported by the National Key Research and Development Program of China(No.2022YFC3702000)the National Natural Science Foundation of China(No.52070169)the Project of Bureau of Science and Technology of Zhoushan,China(No.2022C41013).
文摘Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.
基金supported by the Beijing Municipal Science&Technology Commission(Z231100006123010).
文摘With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.
基金supported by the National Natural Science Foundation of China(22378350).
文摘The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.
基金Science Foundation for Distinguished Young Scholars 2020-JCJQ-ZQ-042 Intelligent and Bionic Spacecraft Thermal Control Technology Inspired by Tree Sap Transport Principle.
文摘As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop.
基金Supported by the National Key R&D Program of China(No.2022YFD2401301)the Special Financial Fund of Spawning Ground Survey in the Bohai Sea and the Yellow Sea from the Ministry of Agriculture and Rural Affairs,China(No.125C0505)。
文摘A comprehensive fishery-independent survey generally incorporates various specialized surveys and integrates different survey objectives to maximize benefits while accounting for cost limitations.It is important to evaluate the adaptability of the comprehensive survey for different taxon to get the optimal design.However,the validity and adaptability of ichthyoplankton sampling incorporated in a comprehensive fishery-independent survey program in estimating abundance of ichthyoplankton species is little known.This study included ichthyoplankton sampling in an integrated survey and assessed the appropriateness of survey design.The Kriging interpolation based on Gaussian models was used to estimate the values at unsurveyed locations based on the original ichthyoplankton survey data in the Haizhou Bay as the“true”values.The sampling performances of the ongoing stratified random sampling(StRS),simple random sampling(SRS),cluster sampling(CS),hexagonal systematic sampling(SYS h),and regular systematic sampling(SYS r)with different sample sizes in estimating ichthyoplankton abundance were compared in relative estimation error(REE),relative bias(RB),and coefficient of variation(CV)by computer simulation.The ongoing StRS performed better than CS and SRS,but not as good as the two systematic sampling methods,and the current sample size in StRS design was insufficient to estimate ichthyoplankton abundance.The average REE values(meanREE)were significantly smaller in two systematic sampling designs than those in other three sampling designs,and the two systematic sampling designs could maintain good inter-annual stability of sampling performances.It is suggested that incorporating ichthyoplankton survey directly into stratified random fishery-independent surveys could not achieve the desired level of accuracy for survey objectives,but the accuracy can be improved by setting additional stations.The assessment framework presented in this study serves as a reference for evaluating the adaptability of integrated surveys to different objectives in other waters.
文摘Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.