Transcritical and supercritical fluids widely exist in aerospace propulsion systems,such as the coolant flow in the regenerative cooling channels of scramjet engines.To numerically simulate the coolant flow,we must ad...Transcritical and supercritical fluids widely exist in aerospace propulsion systems,such as the coolant flow in the regenerative cooling channels of scramjet engines.To numerically simulate the coolant flow,we must address the challenges in solving Riemann problems(RPs)for real fluids under complex flow conditions.In this study,an exact numerical solution for the one-dimensional RP of two-parameter fluids is developed.Due to the comprehensive resolution of fluid thermodynamics,the proposed solution framework is suitable for all forms of the two-parameter equation of state(EoS).The pressure splitting method is introduced to enable parallel calculation of RPs across multiple grid points.Theoretical analysis demonstrates the isentropic nature of weak waves in two-parameter fluids,ensuring that the same mathematical properties as ideal gas could be applied in Newton's iteration.A series of numerical cases validate the effectiveness of the proposed method.A comparative analysis is conducted on the exact Riemann solutions for the real fluid EoS,the ideal gas EoS,and the improved ideal gas EoS under supercritical and transcritical conditions.The results indicate that the improved one produces smaller errors in the calculation of momentum and energy fluxes.展开更多
Stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter x_(eff) are correlated in the PS-converted-wave(PS-wave) anisotropic prestack Kirchhoff time mi...Stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter x_(eff) are correlated in the PS-converted-wave(PS-wave) anisotropic prestack Kirchhoff time migration(PKTM) velocity model and are thus difficult to independently determine.We extended the simplified two-parameter(stacking velocity V_(C2) and anisotropic parameter k_(eff)) moveout equation from stacking velocity analysis to PKTM velocity model updating and formed a new four-parameter(stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter k_(eff)) PS-wave anisotropic PKTM velocity model updating and process flow based on the simplified twoparameter moveout equation.In the proposed method,first,the PS-wave two-parameter stacking velocity is analyzed to obtain the anisotropic PKTM initial velocity and anisotropic parameters;then,the velocity and anisotropic parameters are corrected by analyzing the residual moveout on common imaging point gathers after prestack time migration.The vertical velocity ratio γ_0 of the prestack time migration velocity model is obtained with an appropriate method utilizing the P- and PS-wave stacked sections after level calibration.The initial effective velocity ratio γ_(eff) is calculated using the Thomsen(1999) equation in combination with the P-wave velocity analysis;ultimately,the final velocity model of the effective velocity ratio γ_(eff) is obtained by percentage scanning migration.This method simplifies the PS-wave parameter estimation in high-quality imaging,reduces the uncertainty of multiparameter estimations,and obtains good imaging results in practice.展开更多
In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of i...In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of increments. Our results imply the theorem that have been given by Csorgo and Revesz (1978), and some of their conditions are removed.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
<div style="text-align:justify;"> The ellipse and the superellipse are both planar closed curves with a double axis of symmetry. Here we show the isoconcentration contour of the simplified two-dimensio...<div style="text-align:justify;"> The ellipse and the superellipse are both planar closed curves with a double axis of symmetry. Here we show the isoconcentration contour of the simplified two-dimensional advection-diffusion equation from a stable line source in the center of a wide river. A new two-parameter heteromorphic elliptic equation with a single axis of symmetry is defined. The values of heights, at the point of the maximum width and that of the centroid of the heteromorphic ellipse, are derived through mathematical analysis. Taking the compression coefficient <em>θ </em>= <em>b/a =</em><em></em><span></span> 1 as the criterion, the shape classification of H-type, Standard-type and W-type for heteromorphic ellipse have been given. The area formula, the perimeter theorem, and the radius of curvature of heteromorphic ellipses, and the geometric properties of the rotating body are subsequently proposed. An illustrative analysis shows that the inner contour curve of a heteromorphic elliptic tunnel has obvious advantages over the multiple- arc splicing cross section. This work demonstrates that the heteromorphic ellipses have extensive prospects of application in all categories of tunnels, liquid transport tanks, aircraft and submarines, bridges, buildings, furniture, and crafts. </div>展开更多
This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates th...This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates through an optical [D (-B) (-C) A] system, the energy density of the output field is equal to the Radon transform of the Wigner function of the input field, where the Radon transform parameters are D, B. It prove this theorem in both spatial-domain and frequency-domain, in the latter case the Radon transform parameters are A, C.展开更多
A new two-parameter formula for the rotational spectra of well deformed nuclei isproposed. The formula is deduced from experimental level systematics and alternatively fromnuclear hydrodynamics. Comparisons with a gre...A new two-parameter formula for the rotational spectra of well deformed nuclei isproposed. The formula is deduced from experimental level systematics and alternatively fromnuclear hydrodynamics. Comparisons with a great number of rotational spectra of even-even nu-clei in rare-earth and actinides region show that the formula is the best one among all two-pa-rameter formulas. It is pointed out that this formula can be applied to the spin assignment forsuperdeformed band.展开更多
The n-power two-parameter universal equation for rotational spectra which we deduced recently is appliedto the description of the rotational bands of several diatomic and tetra-atomic molecules. Excellent agreement wi...The n-power two-parameter universal equation for rotational spectra which we deduced recently is appliedto the description of the rotational bands of several diatomic and tetra-atomic molecules. Excellent agreement withexperimental data can be obtained with small n values. The relation between our equation and the famous Dunhamformula is discussed.展开更多
Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual wo...Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.展开更多
The empirical Bayes test problem is considered for scale parameter of twoparameter exponential distribution under type-II censored data.By using wavelets estimation method,the EB test function is constructed,of which ...The empirical Bayes test problem is considered for scale parameter of twoparameter exponential distribution under type-II censored data.By using wavelets estimation method,the EB test function is constructed,of which the asymptotic optimality and convergence rates are obtained.Finally,an example concerning the main result is given.展开更多
We investigate the dynamics of entanglement for a two-parameter class of states in a hybrid qubit-qutrit system under the influence of various dissipative channels. Our results show that entanglement sudden death (ES...We investigate the dynamics of entanglement for a two-parameter class of states in a hybrid qubit-qutrit system under the influence of various dissipative channels. Our results show that entanglement sudden death (ESD) is a general phenomenon and it usually takes place in a qubit-qutrit system interacting with various noisy channels, not only the ease with dephasing and depolarizing channels observed by others. ESD can only be avoided for some initially entangled states under some particular noisy channels. Moreover, the environment affects the entanglement and the coherence of the system in very different ways.展开更多
This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Ber...This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.展开更多
The two-parameter exponential distribution is proposed to be an underlying model,and prediction bounds for future observations are obtained by using Bayesian approach.Prediction intervals are derived for unobserved li...The two-parameter exponential distribution is proposed to be an underlying model,and prediction bounds for future observations are obtained by using Bayesian approach.Prediction intervals are derived for unobserved lifetimes in one-sample prediction and two-sample prediction based on type Ⅱ doubly censored samples.A numerical example is given to illustrate the procedures,prediction intervals are investigated via Monte Carlo method,and the accuracy of prediction intervals is presented.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms...In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.展开更多
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12525202)。
文摘Transcritical and supercritical fluids widely exist in aerospace propulsion systems,such as the coolant flow in the regenerative cooling channels of scramjet engines.To numerically simulate the coolant flow,we must address the challenges in solving Riemann problems(RPs)for real fluids under complex flow conditions.In this study,an exact numerical solution for the one-dimensional RP of two-parameter fluids is developed.Due to the comprehensive resolution of fluid thermodynamics,the proposed solution framework is suitable for all forms of the two-parameter equation of state(EoS).The pressure splitting method is introduced to enable parallel calculation of RPs across multiple grid points.Theoretical analysis demonstrates the isentropic nature of weak waves in two-parameter fluids,ensuring that the same mathematical properties as ideal gas could be applied in Newton's iteration.A series of numerical cases validate the effectiveness of the proposed method.A comparative analysis is conducted on the exact Riemann solutions for the real fluid EoS,the ideal gas EoS,and the improved ideal gas EoS under supercritical and transcritical conditions.The results indicate that the improved one produces smaller errors in the calculation of momentum and energy fluxes.
基金supported by the Important National Science&Technology Specific Projects(No.2011ZX05019-003)the New Method and Technology Research Project of Geophysical Exploration of CNPC(No.2014A-3612)
文摘Stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter x_(eff) are correlated in the PS-converted-wave(PS-wave) anisotropic prestack Kirchhoff time migration(PKTM) velocity model and are thus difficult to independently determine.We extended the simplified two-parameter(stacking velocity V_(C2) and anisotropic parameter k_(eff)) moveout equation from stacking velocity analysis to PKTM velocity model updating and formed a new four-parameter(stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter k_(eff)) PS-wave anisotropic PKTM velocity model updating and process flow based on the simplified twoparameter moveout equation.In the proposed method,first,the PS-wave two-parameter stacking velocity is analyzed to obtain the anisotropic PKTM initial velocity and anisotropic parameters;then,the velocity and anisotropic parameters are corrected by analyzing the residual moveout on common imaging point gathers after prestack time migration.The vertical velocity ratio γ_0 of the prestack time migration velocity model is obtained with an appropriate method utilizing the P- and PS-wave stacked sections after level calibration.The initial effective velocity ratio γ_(eff) is calculated using the Thomsen(1999) equation in combination with the P-wave velocity analysis;ultimately,the final velocity model of the effective velocity ratio γ_(eff) is obtained by percentage scanning migration.This method simplifies the PS-wave parameter estimation in high-quality imaging,reduces the uncertainty of multiparameter estimations,and obtains good imaging results in practice.
基金Supported by the National Natural Science Foundation of ChinaZhejiang Province Natural Science Fund
文摘In this paper, we consider a general form of the increments for a two-parameter Wiener process. Both the Csorgo-Revesz's increments and a class of the lag increments are the special cases of this general form of increments. Our results imply the theorem that have been given by Csorgo and Revesz (1978), and some of their conditions are removed.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
文摘<div style="text-align:justify;"> The ellipse and the superellipse are both planar closed curves with a double axis of symmetry. Here we show the isoconcentration contour of the simplified two-dimensional advection-diffusion equation from a stable line source in the center of a wide river. A new two-parameter heteromorphic elliptic equation with a single axis of symmetry is defined. The values of heights, at the point of the maximum width and that of the centroid of the heteromorphic ellipse, are derived through mathematical analysis. Taking the compression coefficient <em>θ </em>= <em>b/a =</em><em></em><span></span> 1 as the criterion, the shape classification of H-type, Standard-type and W-type for heteromorphic ellipse have been given. The area formula, the perimeter theorem, and the radius of curvature of heteromorphic ellipses, and the geometric properties of the rotating body are subsequently proposed. An illustrative analysis shows that the inner contour curve of a heteromorphic elliptic tunnel has obvious advantages over the multiple- arc splicing cross section. This work demonstrates that the heteromorphic ellipses have extensive prospects of application in all categories of tunnels, liquid transport tanks, aircraft and submarines, bridges, buildings, furniture, and crafts. </div>
基金supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)
文摘This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates through an optical [D (-B) (-C) A] system, the energy density of the output field is equal to the Radon transform of the Wigner function of the input field, where the Radon transform parameters are D, B. It prove this theorem in both spatial-domain and frequency-domain, in the latter case the Radon transform parameters are A, C.
基金The project supported by the National Natural Scicnce Foundation of China CCAST (World Lab)
文摘A new two-parameter formula for the rotational spectra of well deformed nuclei isproposed. The formula is deduced from experimental level systematics and alternatively fromnuclear hydrodynamics. Comparisons with a great number of rotational spectra of even-even nu-clei in rare-earth and actinides region show that the formula is the best one among all two-pa-rameter formulas. It is pointed out that this formula can be applied to the spin assignment forsuperdeformed band.
文摘The n-power two-parameter universal equation for rotational spectra which we deduced recently is appliedto the description of the rotational bands of several diatomic and tetra-atomic molecules. Excellent agreement withexperimental data can be obtained with small n values. The relation between our equation and the famous Dunhamformula is discussed.
文摘Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.
基金Supported by the NNSF of China(70471057)Supported by the Natural Science Foundation of the Education Department of Shannxi Province(03JK065)
文摘The empirical Bayes test problem is considered for scale parameter of twoparameter exponential distribution under type-II censored data.By using wavelets estimation method,the EB test function is constructed,of which the asymptotic optimality and convergence rates are obtained.Finally,an example concerning the main result is given.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10974020 and 11174039,NCET-11-0031the Fundamental Research Funds for the Central Universities
文摘We investigate the dynamics of entanglement for a two-parameter class of states in a hybrid qubit-qutrit system under the influence of various dissipative channels. Our results show that entanglement sudden death (ESD) is a general phenomenon and it usually takes place in a qubit-qutrit system interacting with various noisy channels, not only the ease with dephasing and depolarizing channels observed by others. ESD can only be avoided for some initially entangled states under some particular noisy channels. Moreover, the environment affects the entanglement and the coherence of the system in very different ways.
文摘This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.
文摘The two-parameter exponential distribution is proposed to be an underlying model,and prediction bounds for future observations are obtained by using Bayesian approach.Prediction intervals are derived for unobserved lifetimes in one-sample prediction and two-sample prediction based on type Ⅱ doubly censored samples.A numerical example is given to illustrate the procedures,prediction intervals are investigated via Monte Carlo method,and the accuracy of prediction intervals is presented.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
基金supported by the National Natural Science Foundation of China(No.62373027).
文摘In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.