期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Numerical solutions of two-dimensional nonlinear integral equations via Laguerre Wavelet method with convergence analysis
1
作者 K.Maleknejad M.Soleiman Dehkordi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第1期83-98,共16页
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i... In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method. 展开更多
关键词 he two-dimensional nonlinear integral equations the nonlinear mixed Volterra-Fredholm inte-gral equations two-dimensional Laguerre wavelet Orthogonal polynomial convergence analysis the Darboux problem.
在线阅读 下载PDF
Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation
2
作者 Weifang Weng Zhenya Yan 《Communications in Theoretical Physics》 2025年第5期1-20,共20页
In this paper,we present some properties of scattering data for the derivative nonlinear Schrödinger equation in H^(S)(R)(s≥1/2)starting from the Lax pair.We show that the reciprocal of the transmission coeffici... In this paper,we present some properties of scattering data for the derivative nonlinear Schrödinger equation in H^(S)(R)(s≥1/2)starting from the Lax pair.We show that the reciprocal of the transmission coefficient can be expressed as the sum of some iterative integrals,and its logarithm can be written as the sum of some connected iterative integrals.We provide the asymptotic properties of the first few iterative integrals of the reciprocal of the transmission coefficient.Moreover,we provide some regularity properties of the reciprocal of the transmission coefficient related to scattering data in H^(S)(R). 展开更多
关键词 derivative nonlinear Schrödinger equation modified Zakharov-Shabat spectral problem scattering data inverse scattering transform ASYMPTOTICS
原文传递
Numerical method for dynamics of multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints 被引量:3
3
作者 Ziyao XU Qi WANG Qingyun WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第12期1733-1752,共20页
Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction ... Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects. 展开更多
关键词 non-smooth dynamics nonholonomic constraint Coulomb dry friction two-dimensional friction nonlinear complementarity problem (NCP)
在线阅读 下载PDF
Spectral Method for Three-Dimensional Nonlinear Klein-Gordon Equation by Using Generalized Laguerre and Spherical Harmonic Functions 被引量:3
4
作者 Xiao-Yong Zhang Ben-Yu Guo Yu-Jian Jiao 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第1期43-64,共22页
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ... In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry. 展开更多
关键词 Generalized Laguerre-spherical harmonic spectral method Cauchy problem of nonlinear Klein-Gordon equation.
在线阅读 下载PDF
Numerical Solution of Mean-Square Approximation Problem of Real Nonnegative Function by the Modulus of Double Fourier Integral 被引量:1
5
作者 Petro Savenko Myroslava Tkach 《Applied Mathematics》 2011年第9期1076-1090,共15页
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot... A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented. 展开更多
关键词 Mean-Square Approximation Discrete FOURIER Transform two-dimensional nonlinear Integral Equation NONUNIQUENESS and Branching of Solutions two-dimensional nonlinear spectral problem
在线阅读 下载PDF
A MULTISTEP CHARACTERISTIC FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR CONVECTION-DIFFUSION PROBLEMS
6
作者 YU Xijun(Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,P. O.Box 8009-26, Beijing 100088, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1999年第4期323-334,共12页
A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate s... A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2. 展开更多
关键词 two-dimensional nonlinear CONVECTION-DIFFUSION problem an MULTISTEP char-acteristic DIFFERENCE method convergence error estimate.
在线阅读 下载PDF
An Integrable Decomposition of Defocusing Nonlinear Schr(o|¨)dinger Equation
7
作者 XIA Bao-Qiang ZHOU Ru-Guang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第8期203-205,共3页
The method of nonlinearization of spectral problems is developed to the defocusing nonlinear Schr(o|¨)dingerequation.As an application,an integrable decomposition of the defocusing nonlinear Schr(o|¨)dinger ... The method of nonlinearization of spectral problems is developed to the defocusing nonlinear Schr(o|¨)dingerequation.As an application,an integrable decomposition of the defocusing nonlinear Schr(o|¨)dinger equation is presented. 展开更多
关键词 nonlinearization of spectral problem defocusing nonlinear Schrodinger equation integrable Hamiltonian system
在线阅读 下载PDF
An Integrable Symplectic Map Related to Discrete Nonlinear Schrdinger Equation
8
作者 赵静 周汝光 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第5期799-802,共4页
The method of nonlinearization of spectral problem is developed and applied to the discrete nonlinear Schr6dinger (DNLS) equation which is a reduction of the Ablowitz-Ladik equation with a reality condition. A new i... The method of nonlinearization of spectral problem is developed and applied to the discrete nonlinear Schr6dinger (DNLS) equation which is a reduction of the Ablowitz-Ladik equation with a reality condition. A new integable symplectic map is obtained and its integrable properties such as the Lax representation, r-matrix, and invariants are established. 展开更多
关键词 nonlinearization of spectral problem integrable symplectic map discrete NLS equation Ablowitz-Ladik equation
在线阅读 下载PDF
Reconstructing the Time-Dependent Thermal Coefcient in 2D Free Boundary Problems
9
作者 M.J.Huntul 《Computers, Materials & Continua》 SCIE EI 2021年第6期3681-3699,共19页
The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and ad... The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and additional measurements is,for the rst time,numerically investigated.This inverse problem appears extensively in the modelling of various phenomena in engineering and physics.For instance,steel annealing,vacuum-arc welding,fusion welding,continuous casting,metallurgy,aircraft,oil and gas production during drilling and operation of wells.From literature we already know that this inverse problem has a unique solution.However,the problem is still ill-posed by being unstable to noise in the input data.For the numerical realization,we apply the alternating direction explicit method along with the Tikhonov regularization to nd a stable and accurate numerical solution of nite differences.The root mean square error(rmse)values for various noise levels p for both smooth and non-smooth continuous time-dependent coef-cients Examples are compared.The resulting nonlinear minimization problem is solved numerically using the MATLAB subroutine lsqnonlin.Both exact and numerically simulated noisy input data are inverted.Numerical results presented for two examples show the efciency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data. 展开更多
关键词 Inverse identication problem two-dimensional parabolic equation free boundary Tikhonov regularization nonlinear optimization
在线阅读 下载PDF
一类非线性互补问题的新修正谱梯度投影方法 被引量:5
10
作者 林婷 柯艺芬 +1 位作者 张振 马昌凤 《福建师范大学学报(自然科学版)》 CAS 2022年第5期34-42,共9页
提出了一类求解非线性互补问题的新修正谱梯度投影方法.首先,将非线性互补问题等价地表述为一个非线性方程组.进而,提出一类新的修正谱梯度投影方法求解所得的非线性方程组.新方法具有如下特点:谱梯度主要由修正的长Barzilli-Borwein步... 提出了一类求解非线性互补问题的新修正谱梯度投影方法.首先,将非线性互补问题等价地表述为一个非线性方程组.进而,提出一类新的修正谱梯度投影方法求解所得的非线性方程组.新方法具有如下特点:谱梯度主要由修正的长Barzilli-Borwein步长和修正的短Barzilli-Borwein步长的凸组合决定,并采用了一种新的线搜索技术.数值实验证明所提出的方法能够有效地求解非线性互补问题. 展开更多
关键词 非线性互补问题 谱梯度投影 全局收敛性
在线阅读 下载PDF
非线性Fokker-Planck方程的Hermite谱配置方法 被引量:1
11
作者 王天军 杨森 《安徽工业大学学报(自然科学版)》 CAS 2012年第4期381-384,共4页
以Hermite-Gauss节点为配置点,用谱配置方法求数值解,逼近无界区域上的非线性Fokker-Planck方程初值问题的理论解。给出算法格式,数值运算表明所提算法格式的有效性和高精度。所给算法尤其适合于非线性问题,也可用于求解无界区域上非线... 以Hermite-Gauss节点为配置点,用谱配置方法求数值解,逼近无界区域上的非线性Fokker-Planck方程初值问题的理论解。给出算法格式,数值运算表明所提算法格式的有效性和高精度。所给算法尤其适合于非线性问题,也可用于求解无界区域上非线性常微分方程定解问题。 展开更多
关键词 非线性Fokker-Planck方程 初值问题 谱配置方法 Hermite-Gauss节点
在线阅读 下载PDF
非线性Schr inger方程非周期初值问题的数值方法 被引量:1
12
作者 高兴宝 《陕西师大学报(自然科学版)》 CSCD 1993年第3期19-22,共4页
研究了非线性Schrodinger方程:iu_t-u_(xx)+βq(|u|~2)u=0,x∈R^1,0≤t≤T,非周期初值问题的数值解法.化非周期初值问题为周期问题,并构造了周期问题的Euler拟谱格式和跬跳拟谱格式,由此得到了误差估计,最后给出了具体算例和计算结果.
关键词 非线性 薛定锷方程 初值问题
在线阅读 下载PDF
三阶超对称非线性Schr?dinger方程的延拓结构
13
作者 加羊杰 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期16-26,共11页
超对称的Heisenberg铁磁连模型是一类非常重要的可积系统,它与固体物理中的电子强关联Hubbard模型有着紧密的联系.文章主要利用超对称延拓结构理论的方法,分析高阶超对称非线性Schr?dinger方程,进行研究得到了该方程延拓代数对应的Lax对.
关键词 非线性Schr(o)dinger方程 超对称 李代数 延拓结构 LAX对 线性谱问题
在线阅读 下载PDF
一个扩展的r矩阵及其应用
14
作者 徐英 王素霞 《泰山学院学报》 2015年第6期24-29,共6页
发展并应用孤立子方程的谱问题非线性化方法到对称矩阵Kaup-Newell方程上.得到了一个扩展的r矩阵,并应用r矩阵方法证明了对称矩阵kaup-Newell方程的有限维Hamilton系统是Liouville完全可积的.
关键词 对称矩阵Kaup-Newell方程 谱问题非线性化 R矩阵 可积HAMILTON系统
在线阅读 下载PDF
构造谱问题的一种待定系数法
15
作者 李茂华 《内蒙古工业大学学报(自然科学版)》 2004年第1期5-10,共6页
达布变换是求进化方程孤立子解十分有用且有效的方法,进化方程对应的谱问题是应用达布变换求解该方程孤子解的前提.本文提出了一种构造给定进化方程谱问题的待定系数构造方法,借助给定方程的守恒率适当选取变换和多项式的展开式,使问题... 达布变换是求进化方程孤立子解十分有用且有效的方法,进化方程对应的谱问题是应用达布变换求解该方程孤子解的前提.本文提出了一种构造给定进化方程谱问题的待定系数构造方法,借助给定方程的守恒率适当选取变换和多项式的展开式,使问题化为求解超定线性偏微分组.对此超定线性偏微分组可用吴方法和计算机代数系统来获得给定进化方程的谱问题,从而利用达布变换求解该方程的孤子解. 展开更多
关键词 非线性进化方程 谱问题 达布变换 待定系数法
在线阅读 下载PDF
Burgers方程的Jacobi多项式谱方法 被引量:1
16
作者 王辰辰 李婷婷 焦裕建 《上海师范大学学报(自然科学版)》 2021年第3期291-300,共10页
使用Jacobi多项式构造了Burgers方程的谱方法,用其丰富的数值算例验证了新算法的有效性.
关键词 BURGERS方程 谱方法 非线性问题 JACOBI多项式
在线阅读 下载PDF
一个非线性演化方程的达布变换 被引量:1
17
作者 朱赛柯 李芳 《纯粹数学与应用数学》 2022年第2期214-223,共10页
主要研究一个与三阶谱问题相联系的非线性演化方程的Darboux变换及其精确解.首先从空间部分谱问题出发,找到其辅谱问题,然后基于该方程的Lax对构造出该方程所满足的Darboux变换,并确定新旧位势之间的关系,最后选取合适的种子解,利用Darb... 主要研究一个与三阶谱问题相联系的非线性演化方程的Darboux变换及其精确解.首先从空间部分谱问题出发,找到其辅谱问题,然后基于该方程的Lax对构造出该方程所满足的Darboux变换,并确定新旧位势之间的关系,最后选取合适的种子解,利用Darboux变换得到方程的精确解的表达式. 展开更多
关键词 谱问题 非线性演化方程 达布变换 精确解
在线阅读 下载PDF
Finding the Time-dependent Term in 2D Heat Equation from Nonlocal Integral Conditions 被引量:1
18
作者 M.J.Huntul 《Computer Systems Science & Engineering》 SCIE EI 2021年第12期415-429,共15页
The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a v... The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a very interesting and challenging nonlinear inverse coefficient problem with important applications in various fields ranging from radioactive decay,melting or cooling processes,electronic chips,acoustics and geophysics to medicine.Unique solvability theo-rems of these inverse problems are supplied.However,since the problems are still ill-posed(a small modification in the input data can lead to bigger impact on the ultimate result in the output solution)the solution needs to be regularized.Therefore,in order to obtain a stable solution,a regularized objective function is minimized in order to retrieve the unknown coefficient.The two-dimensional inverse problem is discretized using the forward time central space(FTCS)finite-difference method(FDM),which is conditionally stable and recast as a non-linear least-squares minimization of the Tikhonov regularization function.Numerically,this is effectively solved using the MATLAB subroutine lsqnonlin.Both exact and noisy data are inverted.Numerical results for a few benchmark test examples are presented,discussed and assessed with respect to the FTCS-FDM mesh size discretisation,the level of noise with which the input data is contaminated,and the choice of the regularization parameter is discussed based on the trial and error technique. 展开更多
关键词 two-dimensional heat equation Neumann boundary conditions inverse identification problems Tikhonov regularization nonlinear optimization
在线阅读 下载PDF
A novel hierarchy of differential integral equations and their generalized bi-Hamiltonian structures
19
作者 翟云云 耿献国 何国亮 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期13-17,共5页
With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 x 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian s... With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 x 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy. 展开更多
关键词 spectral problem nonlinear evolution equations bi-Hamiltonian structure conservation laws
原文传递
新的4×4方阵形式的Kaup-Newell谱问题及其一个可积分解
20
作者 光琳 张建兵 《淮海工学院学报(自然科学版)》 CAS 2008年第1期9-12,共4页
从2×2方阵形式的Kaup-Newell谱问题出发,构造了新的4×4方阵形式的Kaup-Newell谱问题,该谱问题的保谱发展方程族恰好是保谱Kaup-Newell方程的发展方程族;通过二元非线性化的方法,证明了4×4方阵形式的Kaup-Newell方程在刘... 从2×2方阵形式的Kaup-Newell谱问题出发,构造了新的4×4方阵形式的Kaup-Newell谱问题,该谱问题的保谱发展方程族恰好是保谱Kaup-Newell方程的发展方程族;通过二元非线性化的方法,证明了4×4方阵形式的Kaup-Newell方程在刘维尔意义下存在一个可积分解. 展开更多
关键词 新的4×4方阵形式的Kaup-Newell谱问题 二元非线性化 可积分解
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部