Two-component signal transduction systems(TCSTSs),consisting of a histidine kinase and a response regulator,play a critical role in regulating virulence gene expression in Gram-negative phytopathogenic bacteria Xantho...Two-component signal transduction systems(TCSTSs),consisting of a histidine kinase and a response regulator,play a critical role in regulating virulence gene expression in Gram-negative phytopathogenic bacteria Xanthomonas spp..To date,12 TCSTS genes have been identified,accounting for approximately 10%of the TCSTS genes in each genome that have been experimen-tally identified to be related to pathogenesis.These TCSTSs modulate the expression of a number of virulence factors through diverse molecular mechanisms such as interacting with DNA,protein-binding and involvement in second messenger metabolism,which generates a high level of regulatory versatility.Here we summarize the current knowledge in thisfield and discuss the emerging themes and remaining questions that are important in deciphering the signaling network of TCSTSs in Xantho-monas.展开更多
Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a mode...Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.展开更多
Inspired by the light-dependent signal transduction in nature, we herein report a fully synthetic receptor AZO with the capacity of transmembrane signaling, working by photo-induced change of molecular conformation. O...Inspired by the light-dependent signal transduction in nature, we herein report a fully synthetic receptor AZO with the capacity of transmembrane signaling, working by photo-induced change of molecular conformation. Our receptor has an anchoring group, a rigid and photoresponsive transmembrane unit and a precatalyst tailgroup. After doping in lipid membranes, AZO is membrane anchored and the extended trans-isomer enables the tailgroup to bind with intravesicular Zn^(2+), thereby achieving enzyme activation and triggering downstream events(ester hydrolysis). However, the shortened cis-isomer pulls the tailgroup into lipids, thereby preventing the complexation and all transduction processes. Upon alternative irradiation of ultraviolet(UV) and visible light, the transduction process can be reversible switch between“ON” and “OFF”, achieving light signal transduction. This study provides a new strategy for future design of artificial signal transduction receptors.展开更多
Infertility has become one of the most serious diseases worldwide,and 50% of this disease can be attributed to male-related factors.Spermatogenesis,by definition,is a complex process by which spermatogonial stem cells...Infertility has become one of the most serious diseases worldwide,and 50% of this disease can be attributed to male-related factors.Spermatogenesis,by definition,is a complex process by which spermatogonial stem cells(SSCs)self-renew to maintain stem cell population within the testes and differentiate into mature spermatids.It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility.Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs.In this review,we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal,differentiation,and apoptosis of SSCs,and we illustrate the networks of genes and signaling pathways in SSC fate determinations.We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways.This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.展开更多
Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvemen...Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvement of cAMP in A-B-A, signal transduction. In this present study, the constructed gene ( rd29A-GUS) was transformed into Nicotiana tabacum, and calli was induced from the transgenic plant. The suspension cells obtained from the callus grew well and uniformly. Treatment of the suspension cells with ABA led to an increase in GUS activity, indicating that these transgenic suspension cells are useful for the study of ABA signaling. Addition of nicotinamide (cADPR inhibitor) or U-73122 (phospholiphase C inhibitor) could only partially inhibit the increase of GUS activity elicited by ABA. The inhibitory effect of nicotinamide was enhanced by application of K252a (inhibitor of protein kinase). Treatment of the suspension cells with 8-Br-cAMP, a membrane-permeable analogue of cAMP, could partially replace the effect of ABA. Furthermore, intracellular addition of IBMX (phosphodiesterase inhibitor) mimicked die effect of exogenous cAMP on the deduction of expression of rd29A promoter. These results suggested that cAMP was an important messenger in ABA signal transduction in tobacco suspension cell.展开更多
The growth factor receptor-bound protein 2 (Grb2) -associated binder (Gab) proteins are intracellular scaffolding/ docking molecules,and participate in multiple signaling pathways,usually acting as the downstream ...The growth factor receptor-bound protein 2 (Grb2) -associated binder (Gab) proteins are intracellular scaffolding/ docking molecules,and participate in multiple signaling pathways,usually acting as the downstream effector of protein-tyrosine kinases (PTKs) -triggered signal transduction pathway.When phosphorylated by PTKs,Gab proteins can recruit several signaling molecules (p85,SHP2,and Crk) ,and subsequently activate multiple transmitting signals that are critical for cell growth,survival,differentiation and apoptosis.Recently,it has been reported that Gab2 polymorphism is associated with the increase in the risk of Alzheimer’s disease (AD) and is involved in the pathogenesis of AD.This review mainly focuses on the structure and function of Gab2 protein and its role in the pathogenesis of AD.展开更多
Advances of studies on the acupuncture and pain signal transduction mechanisms in complete Freud's adjuvant arthritis are reviewed from the three aspects, the first messenger of modulating pain signals and the relate...Advances of studies on the acupuncture and pain signal transduction mechanisms in complete Freud's adjuvant arthritis are reviewed from the three aspects, the first messenger of modulating pain signals and the related receptors, the second messenger of modulating pain signals and other factors possibly involved in modulation of pain signal transduction, etc. It is held that modulation of acupuncture for pain signals is a comprehensive course involved in multi-channels, multi-levels, multi-links, and in future, acupuncture analgesic mechanisms for Freud's adjuvant arthritis will be more deeply studied by use of more new techniques and new methods.展开更多
There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-...There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.展开更多
Objective: To study the effect of emodin on protein and gene expressions of the massagers in mobility signal transduction system of cholecyst smooth muscle cells in guinea pig with cholesterol calculus. Methods: The g...Objective: To study the effect of emodin on protein and gene expressions of the massagers in mobility signal transduction system of cholecyst smooth muscle cells in guinea pig with cholesterol calculus. Methods: The guinea pigs were randomly divided into 4 groups, such as control group, gall-stone(GS) group, emodin group and ursodesoxycholic acid(UA) group. Cholesterol calculus models were induced in guinea pigs of GS, emodin and UA groups of induced models by lithogenic diet, while emodin or UA were given to the corresponding group for 7 weeks. The histomorphological and ultrastructure change of gallbladder were detected by microscope and electron microscope, the content of plasma cholecystokinin(CCK) and [Ca^(2+)]i were analyzed successively by radioimmunoassay and flow cytometry. The protein and mR NA of Gsα, Giα and Cap in cholecyst cells were determined by western blotting and real time polymerase chain reaction(RT-PCR). Results: Emodin or UA can relieve pathogenic changes in epithelial cells and muscle cells in gallbladder of guinea pig with cholesterol calculus by microscope and transmission electron microscope. In the cholecyst cells of GS group, CCK levels in plasma and [Ca^(2+)]i decreased, the protein and m RNA of GS group were downregulated,the protein and m RNA of Gi and Cap were up-regulated. Emodin significantly decreased the formative rate of gallstone, improved the pathogenic change in epithelial cells and muscle cells, increased CCK levels in plasma and [Ca^(2+)]i in cholecyst cells, enhanced the protein and mR NA of Gs in cholecyst cells, reduced the protein and mR NA of Gi and Cap in cholecyst cells in guinea pig with cholesterol calculus. Conclusion: The dysfunction of gallbladder contraction gives rise to the disorders of mobility signal transduction system in cholecyst smooth muscle cells, including low content of plasma CCK and [Ca^(2+)]i in cholecyst cells, abnormal protein and mRNA of Gs, Gi and Cap. Emodin can enhance the contractibility of gallbladder and alleviate cholestasis by regulating plasma CCK levels, [Ca2+]i in cholecyst cells and the protein and mR NA of Gs, Gi and Cap.展开更多
The galactopoietic mechanism of Vaccaria segetalis is still unknown. Understanding dibutyl phthalate (DBP) separated from Vaccaria segetalis on the expression of lactation signal transduction genes of mammary gland ...The galactopoietic mechanism of Vaccaria segetalis is still unknown. Understanding dibutyl phthalate (DBP) separated from Vaccaria segetalis on the expression of lactation signal transduction genes of mammary gland epithelial cells, including prlr, erα, akt1, socs2, pparγ and elf5, will be helpful to reveal the molecular mechanism. Western blot and qRT- PCR were used to study the change of prlr, erα, akt, socs2, pparγ, and elf5 expression at mRNA and protein level. Co- localization expression of prolactin receptor (PRLR) and estrogen receptor α (ERα) was observed by immunofluorescence; the expression changes of miRNAs (21, 125b, 143, and 195) and the secretion of β-casein and lactose were detected by qRT-PCR and RP-HPLC. The results showed that Vaccaria segetalis active compound had similar fuctions as estrogen and/or prolactin (PRL) in dairy cow mammary gland epithelial cells (DCMECs), increased the expressions of prlr, erα, akt1, and elf5 genes, while repressed pparγ expressions. DBP promoted socs2 mRNA expression, but its protein expressions were repressed. Furthermore, both DBP and PRL could repress the expressions of miRNA-125b, miRNA-143 and miRNA- 195 in DCMECs. DBP could repress the expression of miRNA-21, while the influence of PRL on miRNA-21 was not certain. DBP could promote the lactation ability of DCMECs by regulating the ER and PRLR cellular signal transduction pathway.展开更多
Object: The authors studied the influence of CO2 pneumoperitoneum on intracellular pH and signal transduction arising from cancer cell multiplication in laparoscopic tumor operation. Method: They set up a simulation o...Object: The authors studied the influence of CO2 pneumoperitoneum on intracellular pH and signal transduction arising from cancer cell multiplication in laparoscopic tumor operation. Method: They set up a simulation of pneumoperitoneum under different CO2 pressure, and then measured the variation of intracellular pH (pHi) at different time and the activity of protein kinase C (PKC) and protein phosphatase 2a (PP2a) at the end of the pneumoperitoneum. After 1 week, the concentration of cancer cells in the culture medium was calculated. Result: When the pressure of CO2 pneumoperitoneum was 0, 10, 20, 30 mmHg respectively, the average pHi was 7.273, 7.075, 6.783, 6.693 at the end of the pneumoperitoneum; PKC activity was 159.4, 168.5,178.0, 181.6 nmol/(g.min) and PP2a was 4158.3, 4066.9, 3984.0, 3878.5 nmol/(g.min) respectively. After 1 week, the cancer cells concentration was 2.15×105, 2.03×105, 2.20×105, 2.18×105 L-1. Conclusion: CO2 pneumoperitoneum could promote acidosis in cancer cells, inducing the activation of protein kinase C and deactivation of protein phosphatase 2a, but it could not accelerate the mitosis rate of the cancer cells.展开更多
Objective:To study the mechanism of insulin resistance in the cholesterol gallstone formation from insulin signal transduction pathway so as to reveal the possible mechanism and the effective role of Albiflorin Granul...Objective:To study the mechanism of insulin resistance in the cholesterol gallstone formation from insulin signal transduction pathway so as to reveal the possible mechanism and the effective role of Albiflorin Granule on preventing the cholesterol gallstones.Methods:Serum triglycerides(TG),free fatty acid(FFA),and total cholesterol(TC) from different groups were measured and liver cells Ins R,PKB,IKK-β protein expression levels were detected by western blotting.Results:Albiflorin significantly decreased the cholesterol gallstone formation rate,increased glucose infusion rate in gallstone guinea pigs and improved insulin resistance.Compared with the normal group,insulin receptor and PKB protein expression in GS group were significantly reduced.IKK-β protein in the GS group increased significantly and Albiflorin could reduce IKK-β protein expression in guinea pig liver cells.Conclusions:The model of insulin resistance in cholesterol gallstone guinea pig was successfully established,which plays an important role in the cholesterol gallstone formation.All aspects of insulin signaling pathway are involved in gallstone formation.Albiflorin can regulate various aspects of insulin signal transduction pathway to prevent the formation of gallbladder.展开更多
Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to tem...Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to temperate regions.However,the molecular mechanisms regulating cold stress responses in whitefly are yet unclear.Mitogen-activated protein kinases(MAPKs)which including p38,ERK,and JNK,are well known for their roles in regulating metabolic responses to cold stress in many insects.In this study,we explored the possible roles of the MAPKs in response to low temperature stresses in the Mediterranean cryptic species(the Q-biotype)of the B.tabaci species complex.First,we cloned the p38 and ERK genes from the whitefly cDNA library.Next,we analyzed the activation of MAPKs during cold stress in the Mediterranean cryptic species by immuno-blotting.After cold stress,the level of phospho-p38 increased but no significant change was observed in the phosphorylation of ERK and JNK,thus suggesting that the p38 might be responsible for the defense response to low temperature stress.Furthermore,we demonstrated that:i)3 min chilling at 0°C was sufficient for the activation of p38 MAPK pathway in this whitefly;and ii)the amount of phosphorylated p38 increased significantly in the first 20 min of chilling,reversed by 60 min,and then returned to the original level by 120 min.Taken together,our results suggest that the p38 pathway is important during response to low temperature stress in the Mediterranean cryptic species of the B.tabaci species complex.展开更多
The copper-binding, membrane-anchored, cellular prion protein (PrP~) has two constitutive cleavage sites producing distinct N- and C-terminal fragments (N1/C1 and N2/C2). Using RK13 cells expressing either human P...The copper-binding, membrane-anchored, cellular prion protein (PrP~) has two constitutive cleavage sites producing distinct N- and C-terminal fragments (N1/C1 and N2/C2). Using RK13 cells expressing either human PrPc, mouse PrPc or mouse PrP^C carrying the 3F4 epitope, this study explored the influence of the PrP^C primary sequence on endoproteolytic cleavage and one putative PrPc function, MAP kinase signal transduction, in response to exogenous copper with or without a perturbed membrane environment. PrPc primary sequence, especially that around the N1/C1 cleavage site, appeared to influence basal levels of proteolysis at this location and extracellular signal-regulat- ed kinase 1/2 (ERK1/2) phosphorylation, with increased processing demonstrating an inverse relationship with basal ERK1/2 activation. Human PrP^C showed increased N1/C1 cleavage in response to copper alone, accompanied by specific p38 and JNK/SAPK phosphorylation. Combined exposure to copper plus the cholesterol-sequestering antibiotic filipin resulted in a mouse PrP^C-specific substantial increase in signal protein phosphorylation, accompanied by an increase in N1/C1 cleavage. Mouse PrPc harboring the human N1/C1 cleavage site assumed more human-like profiles basally and in response to copper and altered membrane environments. Our results demonstrate that the PrPc pri- mary sequence around the N1/C1 cleavage site influences endoproteolytic processing at this location, which appears linked to MAP kinase signal transduction both basally and in response to copper. Further, the primary sequence appears to confer a mutual dependence of N1/C1 cleavage and membrane integrity on the fidelity of PrP^C-related signal transduction in response to exogenous stimuli.展开更多
Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine bindin...Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the “yin yang” or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkB signaling cascades. Because RKIP targets different kinases dependent upon its state ofphosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.展开更多
Erythropoietin (EPO), a 34 kD glycopro-tein, is the principal growth factor regulating theproduction of circulating erythrocytes; EPO isessential for committed CFU - E erythroid pro-genitors to divide several times an...Erythropoietin (EPO), a 34 kD glycopro-tein, is the principal growth factor regulating theproduction of circulating erythrocytes; EPO isessential for committed CFU - E erythroid pro-genitors to divide several times and then to dif-ferentiate into erythrocytes. Like most receptorsfor hematopoietic growth factors, the erythro-poietin receptor (EPO - R) is a type I trans-membrane protein and a member of the cytokinereceptor superfamily. These receptors containfour conserved cysteines and a Trp - Ser - X -展开更多
Steroids function as signaling molecules in both animals and plants. While animal steroid hormones are perceived by nuclear receptor family of transcription factors, brassinosteroids (BR) in plants are perceived by ...Steroids function as signaling molecules in both animals and plants. While animal steroid hormones are perceived by nuclear receptor family of transcription factors, brassinosteroids (BR) in plants are perceived by a cell surface receptor kinase, BRI 1. Recent studies have demonstrated that BR binding to the extracellular domain of BRI 1 induces kinase activation and dimerization with another receptor kinase, BAKI. Activated BRI 1 or BAKI then regulate, possibly indirectly, the activities of BIN2 kinase and/or BSU 1 phosphatase, which directly regulate the phosphorylation status and nuclear accumulation of two homologous transcription factors, BZRI and BES 1. BZRI and BES 1 directly bind to promoters of BR responsive genes to regulate their expression. The BR signaling pathway has become a paradigm for both receptor kinase signaling in plants and steroid signaling by cell surface receptors in general.展开更多
In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels signifi...In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.展开更多
The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level r...The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level reached a maximum 2.5 fold increase. Using the transgenic Arabidopsis plants that have AtHsp 18.2 promoter-β-glucuronidase (GUS) fusion gene, it was found that the level of GUS activity was up-regulated by the addition of caged IP3 at both non-HS and HS temperatures and was down-regulated by the phospholipase C (PLC) inhibitors {1-[6-(( 1713-3-Methoxyestra-1,3,5(10)-trien- 7-yl)amino)hexyl]-2,5-pyrrolidinedione } (U-73122). The intracellular-free calcium ion concentration ([Ca^2+]i) increased during HS at 37℃ in suspension-cultured Arabidopsis cells expressing apoaequorin. Treatment with U-73122 prevented the increase of [Ca^2+]i to some extent. Above results provided primary evidence for the possible involvement of IP3 in HS signal transduction in higher plants.展开更多
ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal trans...ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.30771401)The National Basic Research Program(No.2011CB100700)from the Ministry of Science and Technology of China.
文摘Two-component signal transduction systems(TCSTSs),consisting of a histidine kinase and a response regulator,play a critical role in regulating virulence gene expression in Gram-negative phytopathogenic bacteria Xanthomonas spp..To date,12 TCSTS genes have been identified,accounting for approximately 10%of the TCSTS genes in each genome that have been experimen-tally identified to be related to pathogenesis.These TCSTSs modulate the expression of a number of virulence factors through diverse molecular mechanisms such as interacting with DNA,protein-binding and involvement in second messenger metabolism,which generates a high level of regulatory versatility.Here we summarize the current knowledge in thisfield and discuss the emerging themes and remaining questions that are important in deciphering the signaling network of TCSTSs in Xantho-monas.
基金Supported by the National Natural Science Foundation of China (Nos. 40272054 and 40332022) and Research Grant of Doctoral Program for High Institue to Q. Wu
文摘Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.
基金supported by the National Natural Science Foundation of China (No. 22171085)Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism (Shanghai Municipal Education Commission, No. 2021 Sci & Tech 03–28)。
文摘Inspired by the light-dependent signal transduction in nature, we herein report a fully synthetic receptor AZO with the capacity of transmembrane signaling, working by photo-induced change of molecular conformation. Our receptor has an anchoring group, a rigid and photoresponsive transmembrane unit and a precatalyst tailgroup. After doping in lipid membranes, AZO is membrane anchored and the extended trans-isomer enables the tailgroup to bind with intravesicular Zn^(2+), thereby achieving enzyme activation and triggering downstream events(ester hydrolysis). However, the shortened cis-isomer pulls the tailgroup into lipids, thereby preventing the complexation and all transduction processes. Upon alternative irradiation of ultraviolet(UV) and visible light, the transduction process can be reversible switch between“ON” and “OFF”, achieving light signal transduction. This study provides a new strategy for future design of artificial signal transduction receptors.
基金supported by the grants from the National Nature Science Foundation of China(No.32170862)Major Scientific and Technological Projects for Collaborative Prevention and Control of Birth Defect in Hunan Province(No.2019SK1012)+1 种基金the Research Team for Reproduction Health and Translational Medicine of Hunan Normal University(No.2023JC101)Graduate Scientific Research Innovation Project of Hunan Province,China(No.CX2022520).
文摘Infertility has become one of the most serious diseases worldwide,and 50% of this disease can be attributed to male-related factors.Spermatogenesis,by definition,is a complex process by which spermatogonial stem cells(SSCs)self-renew to maintain stem cell population within the testes and differentiate into mature spermatids.It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility.Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs.In this review,we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal,differentiation,and apoptosis of SSCs,and we illustrate the networks of genes and signaling pathways in SSC fate determinations.We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways.This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.
文摘Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvement of cAMP in A-B-A, signal transduction. In this present study, the constructed gene ( rd29A-GUS) was transformed into Nicotiana tabacum, and calli was induced from the transgenic plant. The suspension cells obtained from the callus grew well and uniformly. Treatment of the suspension cells with ABA led to an increase in GUS activity, indicating that these transgenic suspension cells are useful for the study of ABA signaling. Addition of nicotinamide (cADPR inhibitor) or U-73122 (phospholiphase C inhibitor) could only partially inhibit the increase of GUS activity elicited by ABA. The inhibitory effect of nicotinamide was enhanced by application of K252a (inhibitor of protein kinase). Treatment of the suspension cells with 8-Br-cAMP, a membrane-permeable analogue of cAMP, could partially replace the effect of ABA. Furthermore, intracellular addition of IBMX (phosphodiesterase inhibitor) mimicked die effect of exogenous cAMP on the deduction of expression of rd29A promoter. These results suggested that cAMP was an important messenger in ABA signal transduction in tobacco suspension cell.
基金supported by the National Basic Research Development Program of China(No.2006CB500706)the National Natural Science Foundation of China(No.30700251,30872729,30971031)+1 种基金Shanghai Key Discipline Program(No.S30202)the Program for Out-standing Medical Academic Leader(No.LJ 06003)
文摘The growth factor receptor-bound protein 2 (Grb2) -associated binder (Gab) proteins are intracellular scaffolding/ docking molecules,and participate in multiple signaling pathways,usually acting as the downstream effector of protein-tyrosine kinases (PTKs) -triggered signal transduction pathway.When phosphorylated by PTKs,Gab proteins can recruit several signaling molecules (p85,SHP2,and Crk) ,and subsequently activate multiple transmitting signals that are critical for cell growth,survival,differentiation and apoptosis.Recently,it has been reported that Gab2 polymorphism is associated with the increase in the risk of Alzheimer’s disease (AD) and is involved in the pathogenesis of AD.This review mainly focuses on the structure and function of Gab2 protein and its role in the pathogenesis of AD.
基金Supported by Scientific Research Project Foundation of Shanghai City Science and Technology Committee:07dz19722-5
文摘Advances of studies on the acupuncture and pain signal transduction mechanisms in complete Freud's adjuvant arthritis are reviewed from the three aspects, the first messenger of modulating pain signals and the related receptors, the second messenger of modulating pain signals and other factors possibly involved in modulation of pain signal transduction, etc. It is held that modulation of acupuncture for pain signals is a comprehensive course involved in multi-channels, multi-levels, multi-links, and in future, acupuncture analgesic mechanisms for Freud's adjuvant arthritis will be more deeply studied by use of more new techniques and new methods.
基金This work was supported by the National Natural Science Foundation of China (No. 30470587, No. 30600197).
文摘There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.
基金supported by the National Science Foundation of China(30672698)
文摘Objective: To study the effect of emodin on protein and gene expressions of the massagers in mobility signal transduction system of cholecyst smooth muscle cells in guinea pig with cholesterol calculus. Methods: The guinea pigs were randomly divided into 4 groups, such as control group, gall-stone(GS) group, emodin group and ursodesoxycholic acid(UA) group. Cholesterol calculus models were induced in guinea pigs of GS, emodin and UA groups of induced models by lithogenic diet, while emodin or UA were given to the corresponding group for 7 weeks. The histomorphological and ultrastructure change of gallbladder were detected by microscope and electron microscope, the content of plasma cholecystokinin(CCK) and [Ca^(2+)]i were analyzed successively by radioimmunoassay and flow cytometry. The protein and mR NA of Gsα, Giα and Cap in cholecyst cells were determined by western blotting and real time polymerase chain reaction(RT-PCR). Results: Emodin or UA can relieve pathogenic changes in epithelial cells and muscle cells in gallbladder of guinea pig with cholesterol calculus by microscope and transmission electron microscope. In the cholecyst cells of GS group, CCK levels in plasma and [Ca^(2+)]i decreased, the protein and m RNA of GS group were downregulated,the protein and m RNA of Gi and Cap were up-regulated. Emodin significantly decreased the formative rate of gallstone, improved the pathogenic change in epithelial cells and muscle cells, increased CCK levels in plasma and [Ca^(2+)]i in cholecyst cells, enhanced the protein and mR NA of Gs in cholecyst cells, reduced the protein and mR NA of Gi and Cap in cholecyst cells in guinea pig with cholesterol calculus. Conclusion: The dysfunction of gallbladder contraction gives rise to the disorders of mobility signal transduction system in cholecyst smooth muscle cells, including low content of plasma CCK and [Ca^(2+)]i in cholecyst cells, abnormal protein and mRNA of Gs, Gi and Cap. Emodin can enhance the contractibility of gallbladder and alleviate cholestasis by regulating plasma CCK levels, [Ca2+]i in cholecyst cells and the protein and mR NA of Gs, Gi and Cap.
基金supported by the National High Tech-nologies R&D Program (863 Program) of China(2006AA10Z1A4)the Innovation Team Project of Northeast Agricultural University, China (LXT005-1-2)
文摘The galactopoietic mechanism of Vaccaria segetalis is still unknown. Understanding dibutyl phthalate (DBP) separated from Vaccaria segetalis on the expression of lactation signal transduction genes of mammary gland epithelial cells, including prlr, erα, akt1, socs2, pparγ and elf5, will be helpful to reveal the molecular mechanism. Western blot and qRT- PCR were used to study the change of prlr, erα, akt, socs2, pparγ, and elf5 expression at mRNA and protein level. Co- localization expression of prolactin receptor (PRLR) and estrogen receptor α (ERα) was observed by immunofluorescence; the expression changes of miRNAs (21, 125b, 143, and 195) and the secretion of β-casein and lactose were detected by qRT-PCR and RP-HPLC. The results showed that Vaccaria segetalis active compound had similar fuctions as estrogen and/or prolactin (PRL) in dairy cow mammary gland epithelial cells (DCMECs), increased the expressions of prlr, erα, akt1, and elf5 genes, while repressed pparγ expressions. DBP promoted socs2 mRNA expression, but its protein expressions were repressed. Furthermore, both DBP and PRL could repress the expressions of miRNA-125b, miRNA-143 and miRNA- 195 in DCMECs. DBP could repress the expression of miRNA-21, while the influence of PRL on miRNA-21 was not certain. DBP could promote the lactation ability of DCMECs by regulating the ER and PRLR cellular signal transduction pathway.
基金Project supported by Research and Development Funds of Second Affiliated Hospital, School of Medicine, Zhejiang University, China
文摘Object: The authors studied the influence of CO2 pneumoperitoneum on intracellular pH and signal transduction arising from cancer cell multiplication in laparoscopic tumor operation. Method: They set up a simulation of pneumoperitoneum under different CO2 pressure, and then measured the variation of intracellular pH (pHi) at different time and the activity of protein kinase C (PKC) and protein phosphatase 2a (PP2a) at the end of the pneumoperitoneum. After 1 week, the concentration of cancer cells in the culture medium was calculated. Result: When the pressure of CO2 pneumoperitoneum was 0, 10, 20, 30 mmHg respectively, the average pHi was 7.273, 7.075, 6.783, 6.693 at the end of the pneumoperitoneum; PKC activity was 159.4, 168.5,178.0, 181.6 nmol/(g.min) and PP2a was 4158.3, 4066.9, 3984.0, 3878.5 nmol/(g.min) respectively. After 1 week, the cancer cells concentration was 2.15×105, 2.03×105, 2.20×105, 2.18×105 L-1. Conclusion: CO2 pneumoperitoneum could promote acidosis in cancer cells, inducing the activation of protein kinase C and deactivation of protein phosphatase 2a, but it could not accelerate the mitosis rate of the cancer cells.
基金supported by the National Science Foundation of China(30672698)
文摘Objective:To study the mechanism of insulin resistance in the cholesterol gallstone formation from insulin signal transduction pathway so as to reveal the possible mechanism and the effective role of Albiflorin Granule on preventing the cholesterol gallstones.Methods:Serum triglycerides(TG),free fatty acid(FFA),and total cholesterol(TC) from different groups were measured and liver cells Ins R,PKB,IKK-β protein expression levels were detected by western blotting.Results:Albiflorin significantly decreased the cholesterol gallstone formation rate,increased glucose infusion rate in gallstone guinea pigs and improved insulin resistance.Compared with the normal group,insulin receptor and PKB protein expression in GS group were significantly reduced.IKK-β protein in the GS group increased significantly and Albiflorin could reduce IKK-β protein expression in guinea pig liver cells.Conclusions:The model of insulin resistance in cholesterol gallstone guinea pig was successfully established,which plays an important role in the cholesterol gallstone formation.All aspects of insulin signaling pathway are involved in gallstone formation.Albiflorin can regulate various aspects of insulin signal transduction pathway to prevent the formation of gallbladder.
基金supported by the National Natural Science Foundation of China(30730061)the National Basic Research Program of China(2009CB119203)
文摘Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to temperate regions.However,the molecular mechanisms regulating cold stress responses in whitefly are yet unclear.Mitogen-activated protein kinases(MAPKs)which including p38,ERK,and JNK,are well known for their roles in regulating metabolic responses to cold stress in many insects.In this study,we explored the possible roles of the MAPKs in response to low temperature stresses in the Mediterranean cryptic species(the Q-biotype)of the B.tabaci species complex.First,we cloned the p38 and ERK genes from the whitefly cDNA library.Next,we analyzed the activation of MAPKs during cold stress in the Mediterranean cryptic species by immuno-blotting.After cold stress,the level of phospho-p38 increased but no significant change was observed in the phosphorylation of ERK and JNK,thus suggesting that the p38 might be responsible for the defense response to low temperature stress.Furthermore,we demonstrated that:i)3 min chilling at 0°C was sufficient for the activation of p38 MAPK pathway in this whitefly;and ii)the amount of phosphorylated p38 increased significantly in the first 20 min of chilling,reversed by 60 min,and then returned to the original level by 120 min.Taken together,our results suggest that the p38 pathway is important during response to low temperature stress in the Mediterranean cryptic species of the B.tabaci species complex.
文摘The copper-binding, membrane-anchored, cellular prion protein (PrP~) has two constitutive cleavage sites producing distinct N- and C-terminal fragments (N1/C1 and N2/C2). Using RK13 cells expressing either human PrPc, mouse PrPc or mouse PrP^C carrying the 3F4 epitope, this study explored the influence of the PrP^C primary sequence on endoproteolytic cleavage and one putative PrPc function, MAP kinase signal transduction, in response to exogenous copper with or without a perturbed membrane environment. PrPc primary sequence, especially that around the N1/C1 cleavage site, appeared to influence basal levels of proteolysis at this location and extracellular signal-regulat- ed kinase 1/2 (ERK1/2) phosphorylation, with increased processing demonstrating an inverse relationship with basal ERK1/2 activation. Human PrP^C showed increased N1/C1 cleavage in response to copper alone, accompanied by specific p38 and JNK/SAPK phosphorylation. Combined exposure to copper plus the cholesterol-sequestering antibiotic filipin resulted in a mouse PrP^C-specific substantial increase in signal protein phosphorylation, accompanied by an increase in N1/C1 cleavage. Mouse PrPc harboring the human N1/C1 cleavage site assumed more human-like profiles basally and in response to copper and altered membrane environments. Our results demonstrate that the PrPc pri- mary sequence around the N1/C1 cleavage site influences endoproteolytic processing at this location, which appears linked to MAP kinase signal transduction both basally and in response to copper. Further, the primary sequence appears to confer a mutual dependence of N1/C1 cleavage and membrane integrity on the fidelity of PrP^C-related signal transduction in response to exogenous stimuli.
文摘Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the “yin yang” or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkB signaling cascades. Because RKIP targets different kinases dependent upon its state ofphosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.
文摘Erythropoietin (EPO), a 34 kD glycopro-tein, is the principal growth factor regulating theproduction of circulating erythrocytes; EPO isessential for committed CFU - E erythroid pro-genitors to divide several times and then to dif-ferentiate into erythrocytes. Like most receptorsfor hematopoietic growth factors, the erythro-poietin receptor (EPO - R) is a type I trans-membrane protein and a member of the cytokinereceptor superfamily. These receptors containfour conserved cysteines and a Trp - Ser - X -
基金This work was supported in part by grants from National Natural Science Foundation of China(No.30328004,No.30571269)National Institutes of Health(R01 GM66258-01).
文摘Steroids function as signaling molecules in both animals and plants. While animal steroid hormones are perceived by nuclear receptor family of transcription factors, brassinosteroids (BR) in plants are perceived by a cell surface receptor kinase, BRI 1. Recent studies have demonstrated that BR binding to the extracellular domain of BRI 1 induces kinase activation and dimerization with another receptor kinase, BAKI. Activated BRI 1 or BAKI then regulate, possibly indirectly, the activities of BIN2 kinase and/or BSU 1 phosphatase, which directly regulate the phosphorylation status and nuclear accumulation of two homologous transcription factors, BZRI and BES 1. BZRI and BES 1 directly bind to promoters of BR responsive genes to regulate their expression. The BR signaling pathway has become a paradigm for both receptor kinase signaling in plants and steroid signaling by cell surface receptors in general.
基金supported by a grant from the Education Department of Hebei Province (Mechanism of GH/IGF-1 and protective effects of sericin on gonadal axis lesions in diabetes mellitus), No. 2006301a grant from Science and Technology Department of Hebei Province (Protective effects of sericin on testicular dysfunction in diabetes mellitus), No. 08276101D-19
文摘In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.
基金This work was supported by the National Natural Science Foundation of China (No. 30270796) Natural Science Foundation of Hebei Province, China (No. C2005000171).
文摘The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level reached a maximum 2.5 fold increase. Using the transgenic Arabidopsis plants that have AtHsp 18.2 promoter-β-glucuronidase (GUS) fusion gene, it was found that the level of GUS activity was up-regulated by the addition of caged IP3 at both non-HS and HS temperatures and was down-regulated by the phospholipase C (PLC) inhibitors {1-[6-(( 1713-3-Methoxyestra-1,3,5(10)-trien- 7-yl)amino)hexyl]-2,5-pyrrolidinedione } (U-73122). The intracellular-free calcium ion concentration ([Ca^2+]i) increased during HS at 37℃ in suspension-cultured Arabidopsis cells expressing apoaequorin. Treatment with U-73122 prevented the increase of [Ca^2+]i to some extent. Above results provided primary evidence for the possible involvement of IP3 in HS signal transduction in higher plants.
基金the National Key Basic Research Development Program (Grant No. 2000018605 and 1999011708) the Major Research Plan of NSFC (Grant No. 90102012) and the Chinese National Outstanding Youth Fund (Grant No. 40025106)
文摘ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips.