Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used propor...The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.展开更多
The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template ...The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.展开更多
The effects of Reactive Black 5 utilized to cotton fabrics by short wet-steam process on the dyeing properties were investigated. This study will provide a theoretical reference for short wet-steam process of cotton f...The effects of Reactive Black 5 utilized to cotton fabrics by short wet-steam process on the dyeing properties were investigated. This study will provide a theoretical reference for short wet-steam process of cotton fabrics with bifunctional reactive dyes. The optimal amount of Selilao agent was 20 g/L, while the soaping and rubbing fastness of the dyed cotton fabrics were both reached to 4-5 rating.展开更多
The problem of textile dye pollution has been addressed by various methods,mainly physical,chemical,biological,and acoustical.These methods mainly separate and/or remove the dye present in water.Recently,advanced oxid...The problem of textile dye pollution has been addressed by various methods,mainly physical,chemical,biological,and acoustical.These methods mainly separate and/or remove the dye present in water.Recently,advanced oxidation processes(AOP)have been focused for removal of dye from waste water due to their advantages such as ecofriendly,economic and capable to degrade many dyes or organic pollutant present in water.Photocatalysis is one of the advance oxidation processes,mainly carried out under irradiation of light and suitable photocatalytic materials.The photocatalytic activity of the photocatalytic materials mainly depends on the band gap,surface area,and generation of electron–hole pair for degradation dyes present in water.It has been observed that the surface area plays a major role in photocatalytic degradation of dyes,by providing higher surface area,which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity.This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts.In addition,it also provides the properties of the water polluting dyes,their mechanism and various photocatalytic materials;and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water.展开更多
The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environment...The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.展开更多
Amorphous alloys are being newly applied in wastewater treatment because of their unique atomic packing structure.They possess excellent degradation efficiency,stability and reusability.In this work,Fe_(80)Si_(10)B_(1...Amorphous alloys are being newly applied in wastewater treatment because of their unique atomic packing structure.They possess excellent degradation efficiency,stability and reusability.In this work,Fe_(80)Si_(10)B_(10) and Fe_(83)Si_(5)B_(8)P_(4) amorphous ribbons exhibited ad-vanced catalytic performance for the degradation of Methyl Blue(MB)and Rhodamine B(RhB)dyes,and the color removal reach nearly 100%within 11 min for both the dyes.Com-pared with the Fe_(80)Si_(10)B_(10) amorphous ribbon,the Fe_(83)Si_(5)B_(8)P_(4) ribbon showed higher degra-dation efficiency due to its lower reaction activation energy,higher electron transfer ability and higher Fe content,and the formation of the galvanic cell between the strong Fe-P bonds and the weak Fe-B bonds.It also exhibited high stability and reusability.The degradation ef-ficiency was improved when the appropriate concentration of H_(2)O_(2) is added.As regards the pH,high degradation efficiency was observed in acidic MB solution,but it decreased as the pH increased up to pH 7.The application of the electro-Fenton-like process is discussed,which can effectively improve the degradation performance in a nearly natural solution.This study presents a high efficiency low-cost catalyst for synthetic dye degradation and expands the functional applications of Fe-based amorphous alloys.展开更多
An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio ...An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio of BOD 5/COD was less than 0.13. By the A/O MBR process, the average removal of COD, BOD 5, color and turbidity was 82%, 96%, 71% and 99%, respectively. The average COD, BOD 5, color and turbidity of effluent was 37 mg/L, 0.8 mg/L, 40 DT and 0.44 NUT respectively. The effluent COD met the local standard of reuse water in Beijing, China. The average COD volume load of the anaerobic biological tank was 0.0483 kgCOD/(m 3·d) and that of the aeration tank of the MBR was 0.3589 kgCOD/(m 3·d). The sludge load of the MBR was 0.19 kgCOD/(kg·MLSS·d) on average and the maximum of that was 0.4 kgCOD/(kg·MLSS·d). The flux of the A/O membrane bioreactor could be remained at larger than 50 L/(h·m 2·0.1MPa). The results indicated that A/O membrane bioreactor has technical feasibility for treatment of woolen mill wastewater.展开更多
Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kin...Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.展开更多
Due to an increasing environmental pollution, a search for the cost effective treatment and disposal of the dyes from the textile effluents is getting more and more importance. Oxidation and reduction processes play i...Due to an increasing environmental pollution, a search for the cost effective treatment and disposal of the dyes from the textile effluents is getting more and more importance. Oxidation and reduction processes play important roles in the degradation treatments of the azo dyes. The latter process is more effective and in consequence its mechanism is also better understood. The mechanism of the oxidation processes, the intermediates involved in these reactions and their role in the effectiveness of the oxidative degradation of the azo dyes, viz, phenyl azo b-naphthol (PAN), Sudan I. On exposure to sunlight at 2 1/2 hours for various samples in different concentrations of PAN mixed with Fenton reagent, when the reactive intermediate?reacted with the colour, the pH vs. absorbance generally showed significant degradation in between pH 5 and 6. The results were compared with the same samples on exposure to uv-light of 254 nm and irradiated at 20 minutes. The degradation occurred in samples of relatively high concentrations, viz, 10-3 and 5 × 10-4 mol· dm-3 at near neutral pH 6 whereas. Low concentration samples such as 10-4 and 5 × 10-5 mol·dm-3 showed degradation towards more acidic range of pH 2 to 4. In advanced oxidation process (AOP), generally reactive, strongly oxidizing ·OH radicals play a main role in destruction of the dye molecules. The proposed mechanisms and the rate coefficients for the reactions of ·OH intermediates with the dye molecules and with model compounds are summarized.展开更多
Wool top and knitted fabric were treated with ammonia in the presence of sodium chloride (salt-ammonia process). The effectiveness of salt-ammonia process traditionally used as pretreatment for low temperature dyein...Wool top and knitted fabric were treated with ammonia in the presence of sodium chloride (salt-ammonia process). The effectiveness of salt-ammonia process traditionally used as pretreatment for low temperature dyeing has been investigated for conferring shrink-resistance of wool. The pretreatmont of salt-ammonia process followed by enzymatic treatment has been proved that contribute to not only the enhancement of dyeing behavionr but also shrinkage-resistance in the present studies. A novel composition of salt-ammonia pretreatment, oxidized and reduced treatment as well as protease modification was recommended to achieve low temperature dyeing and shrinkage-resistance of wool. At the same time, the process conditions were optimized by orthogonal array and assessed by dye uptake rate, weight loss and area shrinkage. Laboratory experiments showed that the knitted fabric treated according to optimized conditions of the combined process, achieved not only improvement of dye abilities but also the strict requirement of machine-washable, representing a possible alternative to chlorination.展开更多
In recent years the development of chitosan (CH) based materials as useful adsorbent polymeric matrices is an expanding field in the area of adsorption science. Even though CH has been successfully used for dye remova...In recent years the development of chitosan (CH) based materials as useful adsorbent polymeric matrices is an expanding field in the area of adsorption science. Even though CH has been successfully used for dye removal from aqueous solutions due to its low cost, no considerations have been made about, for example, the effect of changing the pH of chitosan hydrogelor about the dehydrating effect of Ethanol (EtOH) treatment of chitosan film on the dyes removal from water. Consequently in our laboratory we carried out a study focusing the attention, mainly, on the potential use of CH films under different conditions, such as reducing the intrinsic pH, increasing the hydrophobic character by means of ethanol treatment and neutralization of CH films to improve their absorption power. Textile anionic dyes named Direct Red 83:1, Direct Yellow 86 and Direct Blue 78 have been studied with the aim of reducing the contact time of CH film in waste water improving the bleaching efficiency. Neutralized acid CH film and longtime dehydrated one result to be the better films in dye removal from water. Also the reduction of the CH solution acidity during the film preparation determines the decreasing of the contact time improving the results. The effect of initial dye concentration has been examined and the amount of dye adsorption in function of time t, qt (mg/cm2), for each analyzed film has been evaluated comparing the long term effect with the decoloration rate. A linear form of pseudo-first-order Lagergren model has been used and described. The best condition for removing all examined dyes from various dye solutions appears to be the dehydration of a novel projected CH film obtained by means of the film immersion in EtOH for 4 days. Also CH films prepared by well-known literature procedure and neutralized with NaOH treatment appear having an excellent behavior, however the film treatment requires a large quantity of water and time.展开更多
Dye wastewater containing heavy metal ions is a common industrial effluent with complex physicochemical properties. The treatment of metal-dye binary wastewater is difficult. In this work, a novel in-situ ferrite proc...Dye wastewater containing heavy metal ions is a common industrial effluent with complex physicochemical properties. The treatment of metal-dye binary wastewater is difficult. In this work, a novel in-situ ferrite process (IFP) was applied to treat Methylene Blue (MB)-Cu(II) binary wastewater, and the operational parameters were optimized for MB removal. Results showed that the optimum operating conditions were OH/M of 1.72, Cu2+/Fe2+ ratio of 1/2.5, reaction time of 90 min, aeration intensity of 320 mL/min, and reaction temperature of 40℃. Moreover, the presence of Ca2+ and Mg2+ moderately influenced the MB removal. Physical characterization results indicated that the precipitates yielded in IFP presented high surface area {232.50 m2/g) and a multi-porous structure. Based on the Langmuir model, the maximum adsorption capacity toward MB was 347.82 mg/g for the precipitates produced in IFP, which outperformed most other adsorbents. Furthermore, IFP rapidly sequestered MB with removal efficiency 5 to 10 times greater than that by general ferrite adsorption, which suggested a strong enhancement of MB removal by IFP. The MB removal process by IFP showed two different high removal stages, each with a corresponding removal mechanism. In the first brief stage (〈5 min), the initial high MB removal (~95%) was achieved by predominantly electrostatic interactions. Then the sweep effect and encapsulation were dominant in the second longer stage.展开更多
A novel electrochemical setup for wastewater treatment-rotating electrochemical disc process(RECDP)was developed in this article. The anode and cathode are distributed alternatively and evenly on a flat round disc,whi...A novel electrochemical setup for wastewater treatment-rotating electrochemical disc process(RECDP)was developed in this article. The anode and cathode are distributed alternatively and evenly on a flat round disc,which was designed to improve mass transfer of organics from bulk solution to electrode surface,while at the same time increasing oxygen transfer from air to the liquid to benefit the organics oxidization.The color removal of dye Reactive Brilliant Orange X-GN(RBO)was experimentally investigated u...展开更多
The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solutio...The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solution pH,dye concentration,dosage of TiO2 and nano-size of TiO2 have been studied.The increase in initial pH(3,5 and 11) and dye concentration decrease the removal rate.The treatment for FBB and FBL dye solutions is more efficient than that of S-RL.Under optimum conditions,the color removal is found to be almost complete for FBB and FBL while that of S-RL also reaches 95%.Langmuir adsorption isotherm and modified Langmuir-Hinshelwood kinetic model(L-H model) have been fitted to the experimental data and found to correlate the adsorption patterns as well as the kinetics of the dyes studied.展开更多
In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye(RB5) from synthetic contaminated wate...In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye(RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand(COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9 × 10^(-5)cm^2/sec and electrical energy consumption of 20.53 kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology(RSM) are: initial solution p H of 6.29,current density of 1.6 m A/cm^2, electrolyte dose of 0.15 g/L and flow rate of 11.47 m L/min which resulted in an RB5 removal efficiency of 81.62%.展开更多
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金National Natural Science Foundation of China(No.61074154)
文摘The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.
基金supported by the Bingtuan Industrial Technology Research Institute,Bingtuan New materials Research Institute innovation platform project,Research initiation project of Shihezi University(No.RCZK202330)the Science and Technology Program-Regional Innovation Guidance Program(No.2023ZD080)Tianchi Talent Project(No.CZ002735).
文摘The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.
文摘The effects of Reactive Black 5 utilized to cotton fabrics by short wet-steam process on the dyeing properties were investigated. This study will provide a theoretical reference for short wet-steam process of cotton fabrics with bifunctional reactive dyes. The optimal amount of Selilao agent was 20 g/L, while the soaping and rubbing fastness of the dyed cotton fabrics were both reached to 4-5 rating.
基金CSIR-CSMCRI communication No.160/2016funding through Network Project on "Waste to Wealth-Waste Plastics (W2W)" (Project No: CSC-0120)
文摘The problem of textile dye pollution has been addressed by various methods,mainly physical,chemical,biological,and acoustical.These methods mainly separate and/or remove the dye present in water.Recently,advanced oxidation processes(AOP)have been focused for removal of dye from waste water due to their advantages such as ecofriendly,economic and capable to degrade many dyes or organic pollutant present in water.Photocatalysis is one of the advance oxidation processes,mainly carried out under irradiation of light and suitable photocatalytic materials.The photocatalytic activity of the photocatalytic materials mainly depends on the band gap,surface area,and generation of electron–hole pair for degradation dyes present in water.It has been observed that the surface area plays a major role in photocatalytic degradation of dyes,by providing higher surface area,which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity.This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts.In addition,it also provides the properties of the water polluting dyes,their mechanism and various photocatalytic materials;and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water.
文摘The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea govern-ment(MSIT)(No.2018R1A4A1022260).
文摘Amorphous alloys are being newly applied in wastewater treatment because of their unique atomic packing structure.They possess excellent degradation efficiency,stability and reusability.In this work,Fe_(80)Si_(10)B_(10) and Fe_(83)Si_(5)B_(8)P_(4) amorphous ribbons exhibited ad-vanced catalytic performance for the degradation of Methyl Blue(MB)and Rhodamine B(RhB)dyes,and the color removal reach nearly 100%within 11 min for both the dyes.Com-pared with the Fe_(80)Si_(10)B_(10) amorphous ribbon,the Fe_(83)Si_(5)B_(8)P_(4) ribbon showed higher degra-dation efficiency due to its lower reaction activation energy,higher electron transfer ability and higher Fe content,and the formation of the galvanic cell between the strong Fe-P bonds and the weak Fe-B bonds.It also exhibited high stability and reusability.The degradation ef-ficiency was improved when the appropriate concentration of H_(2)O_(2) is added.As regards the pH,high degradation efficiency was observed in acidic MB solution,but it decreased as the pH increased up to pH 7.The application of the electro-Fenton-like process is discussed,which can effectively improve the degradation performance in a nearly natural solution.This study presents a high efficiency low-cost catalyst for synthetic dye degradation and expands the functional applications of Fe-based amorphous alloys.
文摘An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio of BOD 5/COD was less than 0.13. By the A/O MBR process, the average removal of COD, BOD 5, color and turbidity was 82%, 96%, 71% and 99%, respectively. The average COD, BOD 5, color and turbidity of effluent was 37 mg/L, 0.8 mg/L, 40 DT and 0.44 NUT respectively. The effluent COD met the local standard of reuse water in Beijing, China. The average COD volume load of the anaerobic biological tank was 0.0483 kgCOD/(m 3·d) and that of the aeration tank of the MBR was 0.3589 kgCOD/(m 3·d). The sludge load of the MBR was 0.19 kgCOD/(kg·MLSS·d) on average and the maximum of that was 0.4 kgCOD/(kg·MLSS·d). The flux of the A/O membrane bioreactor could be remained at larger than 50 L/(h·m 2·0.1MPa). The results indicated that A/O membrane bioreactor has technical feasibility for treatment of woolen mill wastewater.
文摘Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.
文摘Due to an increasing environmental pollution, a search for the cost effective treatment and disposal of the dyes from the textile effluents is getting more and more importance. Oxidation and reduction processes play important roles in the degradation treatments of the azo dyes. The latter process is more effective and in consequence its mechanism is also better understood. The mechanism of the oxidation processes, the intermediates involved in these reactions and their role in the effectiveness of the oxidative degradation of the azo dyes, viz, phenyl azo b-naphthol (PAN), Sudan I. On exposure to sunlight at 2 1/2 hours for various samples in different concentrations of PAN mixed with Fenton reagent, when the reactive intermediate?reacted with the colour, the pH vs. absorbance generally showed significant degradation in between pH 5 and 6. The results were compared with the same samples on exposure to uv-light of 254 nm and irradiated at 20 minutes. The degradation occurred in samples of relatively high concentrations, viz, 10-3 and 5 × 10-4 mol· dm-3 at near neutral pH 6 whereas. Low concentration samples such as 10-4 and 5 × 10-5 mol·dm-3 showed degradation towards more acidic range of pH 2 to 4. In advanced oxidation process (AOP), generally reactive, strongly oxidizing ·OH radicals play a main role in destruction of the dye molecules. The proposed mechanisms and the rate coefficients for the reactions of ·OH intermediates with the dye molecules and with model compounds are summarized.
文摘Wool top and knitted fabric were treated with ammonia in the presence of sodium chloride (salt-ammonia process). The effectiveness of salt-ammonia process traditionally used as pretreatment for low temperature dyeing has been investigated for conferring shrink-resistance of wool. The pretreatmont of salt-ammonia process followed by enzymatic treatment has been proved that contribute to not only the enhancement of dyeing behavionr but also shrinkage-resistance in the present studies. A novel composition of salt-ammonia pretreatment, oxidized and reduced treatment as well as protease modification was recommended to achieve low temperature dyeing and shrinkage-resistance of wool. At the same time, the process conditions were optimized by orthogonal array and assessed by dye uptake rate, weight loss and area shrinkage. Laboratory experiments showed that the knitted fabric treated according to optimized conditions of the combined process, achieved not only improvement of dye abilities but also the strict requirement of machine-washable, representing a possible alternative to chlorination.
基金supported by the European“DYES4EVER”(Demonstration of cyclodextrin techniques in treatment of waste water in textile industry to recover and reuse textile dyes,LIFE12 ENV/ES/000309)within the LIFE+2012 program“Environment Policy and Governance project application”.
文摘In recent years the development of chitosan (CH) based materials as useful adsorbent polymeric matrices is an expanding field in the area of adsorption science. Even though CH has been successfully used for dye removal from aqueous solutions due to its low cost, no considerations have been made about, for example, the effect of changing the pH of chitosan hydrogelor about the dehydrating effect of Ethanol (EtOH) treatment of chitosan film on the dyes removal from water. Consequently in our laboratory we carried out a study focusing the attention, mainly, on the potential use of CH films under different conditions, such as reducing the intrinsic pH, increasing the hydrophobic character by means of ethanol treatment and neutralization of CH films to improve their absorption power. Textile anionic dyes named Direct Red 83:1, Direct Yellow 86 and Direct Blue 78 have been studied with the aim of reducing the contact time of CH film in waste water improving the bleaching efficiency. Neutralized acid CH film and longtime dehydrated one result to be the better films in dye removal from water. Also the reduction of the CH solution acidity during the film preparation determines the decreasing of the contact time improving the results. The effect of initial dye concentration has been examined and the amount of dye adsorption in function of time t, qt (mg/cm2), for each analyzed film has been evaluated comparing the long term effect with the decoloration rate. A linear form of pseudo-first-order Lagergren model has been used and described. The best condition for removing all examined dyes from various dye solutions appears to be the dehydration of a novel projected CH film obtained by means of the film immersion in EtOH for 4 days. Also CH films prepared by well-known literature procedure and neutralized with NaOH treatment appear having an excellent behavior, however the film treatment requires a large quantity of water and time.
基金supported by National Key Research and Development Program of China(No.2016YFA0203204)the National Natural Science Foundation of China(Nos.51478041 and 51678053)
文摘Dye wastewater containing heavy metal ions is a common industrial effluent with complex physicochemical properties. The treatment of metal-dye binary wastewater is difficult. In this work, a novel in-situ ferrite process (IFP) was applied to treat Methylene Blue (MB)-Cu(II) binary wastewater, and the operational parameters were optimized for MB removal. Results showed that the optimum operating conditions were OH/M of 1.72, Cu2+/Fe2+ ratio of 1/2.5, reaction time of 90 min, aeration intensity of 320 mL/min, and reaction temperature of 40℃. Moreover, the presence of Ca2+ and Mg2+ moderately influenced the MB removal. Physical characterization results indicated that the precipitates yielded in IFP presented high surface area {232.50 m2/g) and a multi-porous structure. Based on the Langmuir model, the maximum adsorption capacity toward MB was 347.82 mg/g for the precipitates produced in IFP, which outperformed most other adsorbents. Furthermore, IFP rapidly sequestered MB with removal efficiency 5 to 10 times greater than that by general ferrite adsorption, which suggested a strong enhancement of MB removal by IFP. The MB removal process by IFP showed two different high removal stages, each with a corresponding removal mechanism. In the first brief stage (〈5 min), the initial high MB removal (~95%) was achieved by predominantly electrostatic interactions. Then the sweep effect and encapsulation were dominant in the second longer stage.
文摘A novel electrochemical setup for wastewater treatment-rotating electrochemical disc process(RECDP)was developed in this article. The anode and cathode are distributed alternatively and evenly on a flat round disc,which was designed to improve mass transfer of organics from bulk solution to electrode surface,while at the same time increasing oxygen transfer from air to the liquid to benefit the organics oxidization.The color removal of dye Reactive Brilliant Orange X-GN(RBO)was experimentally investigated u...
文摘The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solution pH,dye concentration,dosage of TiO2 and nano-size of TiO2 have been studied.The increase in initial pH(3,5 and 11) and dye concentration decrease the removal rate.The treatment for FBB and FBL dye solutions is more efficient than that of S-RL.Under optimum conditions,the color removal is found to be almost complete for FBB and FBL while that of S-RL also reaches 95%.Langmuir adsorption isotherm and modified Langmuir-Hinshelwood kinetic model(L-H model) have been fitted to the experimental data and found to correlate the adsorption patterns as well as the kinetics of the dyes studied.
基金the financial support provided by the High Impact Research Grant UM.C/HIR/MOHE/ENG/43the Bright Sparks Program which made this research possible
文摘In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye(RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand(COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9 × 10^(-5)cm^2/sec and electrical energy consumption of 20.53 kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology(RSM) are: initial solution p H of 6.29,current density of 1.6 m A/cm^2, electrolyte dose of 0.15 g/L and flow rate of 11.47 m L/min which resulted in an RB5 removal efficiency of 81.62%.