Let D be a 2-(v, k, 4) symmetric design and G be a flag-transitive point-primitive automorphism group of D with X ≥G ≤Aut(X) where X ≌ PSL2(q).Then D is a 2-(15,8,4) symmetric design with X = PSL2(9) and ...Let D be a 2-(v, k, 4) symmetric design and G be a flag-transitive point-primitive automorphism group of D with X ≥G ≤Aut(X) where X ≌ PSL2(q).Then D is a 2-(15,8,4) symmetric design with X = PSL2(9) and Xx = PGL2(3) where x is a point of D.展开更多
Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into...Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.展开更多
In this article, we introduce the two dimensional Mellin transform M4(f)(s,t), give some properties, establish the Paley-Wiener theorem and Plancherel formula, present the Hausdorff-Young inequality, and find seve...In this article, we introduce the two dimensional Mellin transform M4(f)(s,t), give some properties, establish the Paley-Wiener theorem and Plancherel formula, present the Hausdorff-Young inequality, and find several applications for the two dimensional Mellin transform.展开更多
Recently, some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaees method considered the manifold structures of the face images, it has limits to solve face ...Recently, some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaees method considered the manifold structures of the face images, it has limits to solve face recognition problem. This paper proposes a new feature extraction method, Two Dimensional Laplacian EigenMap (2DLEM), which especially considers the manifold structures of the face images, and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces, 2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance, a series of ex- periments are performed on the ORL database and the Yale database. Moreover, several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.展开更多
The available alkaline recovery membranes are currently dominated by polymeric materials,but they suffer from a permeation-selectivity trade-off and inferior chemical resistance.Robust two dimensional(2D) lamellar mem...The available alkaline recovery membranes are currently dominated by polymeric materials,but they suffer from a permeation-selectivity trade-off and inferior chemical resistance.Robust two dimensional(2D) lamellar membranes with sub-nanometer wide channels are promising candidates for discerning OH^(-)and other anions.Here,we report the development of alkaline recycling membranes through stacking MoS_(2) nanosheets.Benefiting from the ordered and narrow 2D channels,MoS_(2) membranes show excellent alkaline recovery performances.The OH^(-)dialysis coefficient (U_(OH)-) and separation factor (S)towards simulated OH^(-) and WO_(4)^(2-) across the 500 nm thick MoS_(2) laminates reach 6.9×10^(-3)m·h^(-1)and 34.3 respectively.Furthermore,the chemical environments of MoS_(2) laminates were modulated by intercalating ionic poly(sodium 4-styrene sulfonate)(PSS@MoS_(2)).The U_(OH)-and S values of PSS@MoS_(2) membrane further improve to 11.7×10^(-3)m·h^(-1)and 49.8 respectively.Besides,both MoS_(2) and PSS@MoS_(2) membranes exhibit promising stability.展开更多
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers...The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.展开更多
Based on 2-dimensional vertically governing equations of salt water intrusion at estuaries, a method is obtained, which can predict quantitatively current velocity and salinity distribution along depth when the intrus...Based on 2-dimensional vertically governing equations of salt water intrusion at estuaries, a method is obtained, which can predict quantitatively current velocity and salinity distribution along depth when the intrusion occurs. The volume-controlling method proposed by Patanker and Spalding is used to form the computational pattern and the Power- Law Scheme is used as the diversion pattern of the diffusion term. The comparison between the computational results and the measured ones gives a satisfactory agreement.展开更多
The surface pressure-Area isotherms of Reversed Duckweed amphiphili polymer were examined in view of their chemical structure and two- dimentional properties of polymer monolayer were studied.
The instability of terahertz(THz)plasma waves in two-dimensional(2D)quantum electron gas in a nanometer field effect transistor(FET)with asymmetrical boundary conditions has been investigated.We analyze THz plas...The instability of terahertz(THz)plasma waves in two-dimensional(2D)quantum electron gas in a nanometer field effect transistor(FET)with asymmetrical boundary conditions has been investigated.We analyze THz plasma waves of two parts of the 2D quantum electron gas:gated and ungated regions.The results show that the radiation frequency and the increment(radiation power)in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas.The quantum effects always enhance the radiation power and enlarge the region of instability in both cases.This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process.展开更多
The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here...The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here,we demonstrate the growth of single-crystal 2Dα-Al_(2)O_(3) by high temperature(high-T)annealing of Ni foils.Tens of micrometers of 2Dα-Al_(2)O_(3) flakes grow on the surface of Ni foils,which is attributed to the precipitation of Al atoms from the Ni foil bulk to its surface,followed by the oxidation of Al atoms on the surface.In principle,the Ni foil acts as a solvent,where diluted metal atoms precipitate onto the surface and react with oxygen from the atmosphere to grow single-crystal 2D metal oxides.Our findings may also provide a promising method for synthesizing other single-crystal 2D metal oxides.展开更多
With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottl...With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottlenecks in performance enhancement,such as drain-induced barrier lowering,reduced mobility caused by interface scattering,and limited current on/off ratios.展开更多
Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.A...Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.展开更多
1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are cha...1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.展开更多
The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and ...The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.展开更多
The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mech...The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.展开更多
In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reve...In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.展开更多
The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(U...The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.展开更多
Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scali...Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.展开更多
基金Supported by the National Natural Science Foundation of China(11071081)
文摘Let D be a 2-(v, k, 4) symmetric design and G be a flag-transitive point-primitive automorphism group of D with X ≥G ≤Aut(X) where X ≌ PSL2(q).Then D is a 2-(15,8,4) symmetric design with X = PSL2(9) and Xx = PGL2(3) where x is a point of D.
文摘Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.
文摘In this article, we introduce the two dimensional Mellin transform M4(f)(s,t), give some properties, establish the Paley-Wiener theorem and Plancherel formula, present the Hausdorff-Young inequality, and find several applications for the two dimensional Mellin transform.
基金the National Natural Science Foundation of China(No.60441002)the National Basic Research and Development Program (973)(No.2006CB303105) and (No.2004CB318110)
文摘Recently, some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaees method considered the manifold structures of the face images, it has limits to solve face recognition problem. This paper proposes a new feature extraction method, Two Dimensional Laplacian EigenMap (2DLEM), which especially considers the manifold structures of the face images, and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces, 2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance, a series of ex- periments are performed on the ORL database and the Yale database. Moreover, several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
基金partially supported by the National Key Research and Development Program of China (2022YFB3805102)the National Natural Science Foundation of China (22278105, 21978062)。
文摘The available alkaline recovery membranes are currently dominated by polymeric materials,but they suffer from a permeation-selectivity trade-off and inferior chemical resistance.Robust two dimensional(2D) lamellar membranes with sub-nanometer wide channels are promising candidates for discerning OH^(-)and other anions.Here,we report the development of alkaline recycling membranes through stacking MoS_(2) nanosheets.Benefiting from the ordered and narrow 2D channels,MoS_(2) membranes show excellent alkaline recovery performances.The OH^(-)dialysis coefficient (U_(OH)-) and separation factor (S)towards simulated OH^(-) and WO_(4)^(2-) across the 500 nm thick MoS_(2) laminates reach 6.9×10^(-3)m·h^(-1)and 34.3 respectively.Furthermore,the chemical environments of MoS_(2) laminates were modulated by intercalating ionic poly(sodium 4-styrene sulfonate)(PSS@MoS_(2)).The U_(OH)-and S values of PSS@MoS_(2) membrane further improve to 11.7×10^(-3)m·h^(-1)and 49.8 respectively.Besides,both MoS_(2) and PSS@MoS_(2) membranes exhibit promising stability.
基金This project was supported by the fundation of the Academy of Finland (201353)
文摘The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
文摘Based on 2-dimensional vertically governing equations of salt water intrusion at estuaries, a method is obtained, which can predict quantitatively current velocity and salinity distribution along depth when the intrusion occurs. The volume-controlling method proposed by Patanker and Spalding is used to form the computational pattern and the Power- Law Scheme is used as the diversion pattern of the diffusion term. The comparison between the computational results and the measured ones gives a satisfactory agreement.
文摘The surface pressure-Area isotherms of Reversed Duckweed amphiphili polymer were examined in view of their chemical structure and two- dimentional properties of polymer monolayer were studied.
基金supported by National Natural Science Foundation of China(No.10975114)
文摘The instability of terahertz(THz)plasma waves in two-dimensional(2D)quantum electron gas in a nanometer field effect transistor(FET)with asymmetrical boundary conditions has been investigated.We analyze THz plasma waves of two parts of the 2D quantum electron gas:gated and ungated regions.The results show that the radiation frequency and the increment(radiation power)in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas.The quantum effects always enhance the radiation power and enlarge the region of instability in both cases.This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process.
基金supported by Shenzhen Science and Technology Program(No.KQTD20200820113010022).
文摘The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here,we demonstrate the growth of single-crystal 2Dα-Al_(2)O_(3) by high temperature(high-T)annealing of Ni foils.Tens of micrometers of 2Dα-Al_(2)O_(3) flakes grow on the surface of Ni foils,which is attributed to the precipitation of Al atoms from the Ni foil bulk to its surface,followed by the oxidation of Al atoms on the surface.In principle,the Ni foil acts as a solvent,where diluted metal atoms precipitate onto the surface and react with oxygen from the atmosphere to grow single-crystal 2D metal oxides.Our findings may also provide a promising method for synthesizing other single-crystal 2D metal oxides.
文摘With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottlenecks in performance enhancement,such as drain-induced barrier lowering,reduced mobility caused by interface scattering,and limited current on/off ratios.
基金supported by the Natural Science Foundation of Wenzhou Institute,University of Chinese Academy of Sciences(UCAS)(Grant No.WIUCASQD2023004)the National Natural Science Foundation of China(Grant Nos.12304006,12404265,and 12435001)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.23JC1401400)the Natural Science Foundation of Wenzhou(Grant No.L2023005)the Fundamental Research Funds for the Central Universities of East China University of Science and Technology。
文摘Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.
基金supported by the National Nature Science Foundation of China(No.12172211)the National Key Research and Development Program of China(No.2019YFC1509800)。
文摘1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.
文摘The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.
基金supported by the National Natural Science Foundation of China(Grant Nos.12204173 and 12275263)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301900)supported by the Natural Science Foundation of Fujian Province 802 of China(Grant No.2023J02032)。
文摘The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.
文摘In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.
基金supported by the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(Project No.241827012)the National Natural Science Foundation of China(Grant Nos.U22A6005 and 62271450)+1 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1301502,2024YFA1408701,and 2024YFA1408403)the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.