This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only o...This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.展开更多
In the following pages I will try to give a solution to this very known unsolved problem of theory of numbers. The solution is given here with an important analysis of the proof of formula (4.18), with the introductio...In the following pages I will try to give a solution to this very known unsolved problem of theory of numbers. The solution is given here with an important analysis of the proof of formula (4.18), with the introduction of special intervals between square of prime numbers that I call silver intervals . And I make introduction of another also new mathematic phenomenon of logical proposition “In mathematics nothing happens without reason” for which I use the ancient Greek term “catholic information”. From the theorem of prime numbers we know that the expected multitude of prime numbers in an interval is given by formula ?considering that interval as a continuous distribution of real numbers that represents an elementary natural numbers interval. From that we find that in the elementary interval around of a natural number ν we easily get by dx=1 the probability that has the ν to be a prime number. From the last formula one can see that the second part of formula (4.18) is absolutely in agreement with the above theorem of prime numbers. But the benefit of the (4.18) is that this formula enables correct calculations in set N on finding the multitude of twin prime numbers, in contrary of the above logarithmic relation which is an approximation and must tend to be correct as ν tends to infinity. Using the relationship (4.18) we calculate here the multitude of twins in N, concluding that this multitude tends to infinite. But for the validity of the computation, the distribution of the primes in a random silver interval is examined, proving on the basis of catholic information that the density of primes in the same random silver interval is statistically constant. Below, in introduction, we will define this concept of “catholic information” stems of “information theory” [1] and it is defined to use only general forms in set N, because these represent the set N and not finite parts of it. This concept must be correlated to Riemann Hypothesis.展开更多
目的:双生子法定量探索遗传与环境对儿童青少年情绪与行为问题的影响。方法用父母版长处与困难量表(strengths and difficulties questionnaire,SDQ)评定156对6~18岁双生子的情绪与行为问题。采集颊粘膜、静脉血标本提取DNA,进行...目的:双生子法定量探索遗传与环境对儿童青少年情绪与行为问题的影响。方法用父母版长处与困难量表(strengths and difficulties questionnaire,SDQ)评定156对6~18岁双生子的情绪与行为问题。采集颊粘膜、静脉血标本提取DNA,进行卵型鉴定。运用结构方程模型(structural equation modeling,SEM)分析遗传与环境因素对情绪与行为问题的影响。结果情绪症状受共享环境和特殊环境的影响,两者对情绪症状总变异方差的贡献分别为0.42和0.58;亲社会行为主要受共享环境的影响,共享环境在亲社会行为总变异方差中占0.89;遗传对多动/注意缺陷的影响较大,在总变异方差中占0.62;共享环境对品行障碍的影响较大,在总变异方差中占0.56;遗传、共享环境、特殊环境对同伴问题都有影响,在总变异方差中分别占0.24、0.33和0.43。结论在儿童青少年时期,情绪症状仅受环境影响,而行为问题受遗传与环境的共同影响,不同的行为问题受遗传和环境的影响不同。展开更多
文摘This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.
文摘In the following pages I will try to give a solution to this very known unsolved problem of theory of numbers. The solution is given here with an important analysis of the proof of formula (4.18), with the introduction of special intervals between square of prime numbers that I call silver intervals . And I make introduction of another also new mathematic phenomenon of logical proposition “In mathematics nothing happens without reason” for which I use the ancient Greek term “catholic information”. From the theorem of prime numbers we know that the expected multitude of prime numbers in an interval is given by formula ?considering that interval as a continuous distribution of real numbers that represents an elementary natural numbers interval. From that we find that in the elementary interval around of a natural number ν we easily get by dx=1 the probability that has the ν to be a prime number. From the last formula one can see that the second part of formula (4.18) is absolutely in agreement with the above theorem of prime numbers. But the benefit of the (4.18) is that this formula enables correct calculations in set N on finding the multitude of twin prime numbers, in contrary of the above logarithmic relation which is an approximation and must tend to be correct as ν tends to infinity. Using the relationship (4.18) we calculate here the multitude of twins in N, concluding that this multitude tends to infinite. But for the validity of the computation, the distribution of the primes in a random silver interval is examined, proving on the basis of catholic information that the density of primes in the same random silver interval is statistically constant. Below, in introduction, we will define this concept of “catholic information” stems of “information theory” [1] and it is defined to use only general forms in set N, because these represent the set N and not finite parts of it. This concept must be correlated to Riemann Hypothesis.