Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational ...Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational strat- egies for cavitation predictions under both isothermal and cryogenic conditions, with an emphasis on the attached cav- ity. The review considers alternative cavitation models along Reynolds-averaged Navier-Stokes and very lager eddy simu- lation turbulence approaches to ensure that the computational tools can handle flows of engineering interests. Observing the substantial uncertainties associated with both modeling and experimental information, surrogate modeling strategies are reviewed to assess the implications and relative impor- tance of the various modeling and materials parameters. The exchange between static and dynamic pressures under the influence of the viscous effects can have a noticeable impact on the effective shape of a solid object, which can impact the cavitation structure. The thermal effect with respect to evaporation and condensation dynamics is examined to shed light on the fluid physics associated with cryogenic cav- itation. The surrogate modeling techniques are highlighted in the context of modeling sensitivity assessment. Keywords展开更多
The current work combines numerical and experimental investigations based on a small-scale mockup using the eutectic alloy GaInSn.The jet flow discharging from the submerged entry nozzle was exposed perpendicularly to...The current work combines numerical and experimental investigations based on a small-scale mockup using the eutectic alloy GaInSn.The jet flow discharging from the submerged entry nozzle was exposed perpendicularly to a DC magnetic field across the entire wide face of the mold.Numerical calculations were performed by using the commercial package CFX with an implemented RANS-SST turbulence model.The anisotropic properties of the MHD turbulence were taken into account by specific modifications of the turbulence model.The comparison between our numerical calculations and the experimental results shows a very well agreement.In particular,the modified RANS-SST turbulence model is capable to reconstruct the peculiar phenomenon of the excitation of non-steady,non-isotropic large-scale flow perturbations caused by the application of the DC magnetic field.Another important finding of our study is the feature that the electrical boundary conditions,namely the wall conductivity ratio,have a great impact on the mold flow subjected to an external magnetic field.展开更多
In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is si...In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.展开更多
Flow characteristics around a wall-mounted square cylinder have been numerically simulated at aspect ratios (AR) ranging from 4 to 7 at Re =10 000. Four turbulence models have been compared in terms of drag coefficien...Flow characteristics around a wall-mounted square cylinder have been numerically simulated at aspect ratios (AR) ranging from 4 to 7 at Re =10 000. Four turbulence models have been compared in terms of drag coefficient (C_D). The closest result has been provided by two turbulence models, namely, k-ε Realizable and k ?ω Shear Stress Transport (SST). Hence, these models were utilized to present the flow patterns of pressure distributions, turbulent kinetic energy values, velocity magnitude values with streamlines, streamwise velocity components, crossstream velocity components and spanwise velocity components on different planes. Flow stagnation has been attained in front of the cylinder. Pressure values peaked for the upstream region. Over the cylinders, the tip vortex structure was dominant owing to the influence of the free end. Flow separation from the top front edge of the body has been obtained. The dividing streamline affected by the flow separation was highly effective in the wake region and moved nearer to the body when the aspect ratio was decreased;the reason was the wake shrinkage owing to the decreasing aspect ratio. Upwash and downwash have been seen in the cylinder wake. These two models presented similar flow patterns and drag coefficients. These drag coefficients are in good agreement with those in previous studies.展开更多
This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer si...This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer significant advantages for urban wind applications,such as omnidirectional wind capture and a compact,ground-accessible design,they face substantial aerodynamic challenges,including dynamic stall,blade-wake interactions,and continuously varying angles of attack throughout their rotation.The review critically evaluates how CFD has been leveraged to address these challenges,detailing the modelling frameworks,simulation setups,mesh strategies,turbulence models,and boundary condition treatments adopted in the literature.Special attention is given to the comparative performance of 2-D vs.3-D simulations,static and dynamic meshing techniques(sliding,overset,morphing),and the impact of near-wall resolution on prediction fidelity.Moreover,this review maps the evolution of CFD tools in capturing key performance indicators including power coefficient,torque,flow separation,and wake dynamics,while highlighting both achievements and current limitations.The synthesis of studies reveals best practices,identifies gaps in simulation fidelity and validation strategies,and outlines critical directions for future research,particularly in high-fidelity modelling and cost-effective simulation of urban-scale VAWTs.By synthesizing insights from over a hundred referenced studies,this review serves as a consolidated resource to advance VAWT design and performance optimization through CFD.These include studies on various aspects such as blade geometry refinement,turbulence modeling,wake interaction mitigation,tip-loss reduction,dynamic stall control,and other aerodynamic and structural improvements.This,in turn,supports their broader integration into sustainable energy systems.展开更多
Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leve...Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leveraging complex ML models,such as those developed using field inversion and machine learning(FIML),to dynamically adjust the constants within the baseline RANS model.However,the ML models often overlook the fundamental calibrations of the RANS turbulence model.Consequently,the basic calibration of the baseline RANS model is disrupted,leading to a degradation in the accuracy,particularly in basic wall-attached flows outside of the training set.To address this issue,a modified version of the Spalart-Allmaras(SA)turbulence model,known as Rubber-band SA(RBSA),has been proposed recently.This modification involves identifying and embedding constraints related to basic wall-attached flows directly into the model.It is shown that no matter how the parameters of the RBSA model are adjusted as constants throughout the flow field,its accuracy in wall-attached flows remains unaffected.In this paper,we propose a new constraint for the RBSA model,which better safeguards the law of wall in extreme conditions where the model parameter is adjusted dramatically.The resultant model is called the RBSA-poly model.We then show that when combined with FIML augmentation,the RBSA-poly model effectively preserves the accuracy of simple wall-attached flows,even when the adjusted parameters become functions of local flow variables rather than constants.A comparative analysis with the FIML-augmented original SA model reveals that the augmented RBSA-poly model reduces error in basic wall-attached flows by 50%while maintaining comparable accuracy in trained separated flows.These findings confirm the effectiveness of utilizing FIML in conjunction with the RBSA model,offering superior accuracy retention in cardinal flows.展开更多
The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbule...The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges.展开更多
We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-St...We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.展开更多
A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined j...A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined jets without excess streamwise momentum are considered. The numerical results of the Standard two-equation k-ε model show that the turbulent structure can be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R> 4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallel with the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20-60. The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated, vvith distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets in strong crossflow, i. e. R ≥ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortex flow can stili be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flovv characteristics and mixing rates are well supported by experimental and field dala展开更多
The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transp...The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.展开更多
This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transp...This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...展开更多
Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current re...Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.展开更多
Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational c...Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.展开更多
The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows ...The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators.展开更多
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of press...Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.展开更多
The application of machine learning(ML)algorithms to turbulence modeling has shown promise over the last few years,but their application has been restricted to eddy viscosity based closure approaches.In this article,w...The application of machine learning(ML)algorithms to turbulence modeling has shown promise over the last few years,but their application has been restricted to eddy viscosity based closure approaches.In this article,we discuss the rationale for the application of machine learning with high-fidelity turbulence data to develop models at the level of Reynolds stress transport modeling.Based on these rationales,we compare different machine learning algorithms to determine their efficacy and robustness at modeling the different transport processes in the Reynolds stress transport equations.Those data-driven algorithms include Random forests,gradient boosted trees,and neural networks.The direct numerical simulation(DNS)data for flow in channels are used both as training and testing of the ML models.The optimal hyper-parameters of the ML algorithms are determined using Bayesian optimization.The efficacy of the above-mentioned algorithms is assessed in the modeling and prediction of the terms in the Reynolds stress transport equations.It was observed that all three algorithms predict the turbulence parameters with an acceptable level of accuracy.These ML models are then applied for the prediction of the pressure strain correlation of flow cases that are different from the flows used for training,to assess their robustness and generalizability.This explores the assertion that ML-based data-driven turbulence models can overcome the modeling limitations associated with the traditional turbulence models and ML models trained with large amounts of data with different classes of flows can predict flow field with reasonable accuracy for unknown flows with similar flow physics.In addition to this verification,we carry out validation for the final ML models by assessing the importance of different input features for prediction.展开更多
In this work,the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated.In the present paper,Reynolds Averaged Navier Stokes...In this work,the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated.In the present paper,Reynolds Averaged Navier Stokes(RANS)equations with the Spalart-Allmaras,SST k-ω,and SST-Trans models are used for numerical simulations.The possibility of laminar-toturbulent boundary layer transition is summarized in phase diagrams in terms of skin friction coefficient and Reynolds number.The numerical results show that SST-Trans method can detect different aspects of flow such as adverse pressure gradient and laminar-to-turbulent transition onset.Our numerical results indicate that the laminar-to-turbulent transition location on the 6:1 prolate spheroid is in a good agreement with the experimental data at high Reynolds numbers.展开更多
Many recent laboratory experiments and numerical simulations support a non-equilibrium dissipation scaling in decaying turbulence before it reaches an equilibrium state.By analyzing a direct numerical simulation(DNS)d...Many recent laboratory experiments and numerical simulations support a non-equilibrium dissipation scaling in decaying turbulence before it reaches an equilibrium state.By analyzing a direct numerical simulation(DNS)database of a transitional boundary-layer flow,we show that the transition region and the non-equilibrium turbulence region,which are located in different streamwise zones,present different non-equilibrium scalings.Moreover,in the wall-normal direction,the viscous sublayer,log layer,and outer layer show different non-equilibrium phenomena which differ from those in grid-generated turbulence and transitional channel flows.These findings are expected to shed light on the modelling of various types of non-equilibrium turbulent flows.展开更多
Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical predictio...Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical prediction of supercavitating flows,which are accompanied with large density ratio and large-scaled swirling flow structures.The applications of the NLEVM were carried out through a self-developed cavitation codes,coupled with a cavitation model based on the transport equation of liquid phase.These NLEVM were verified capable of capturing more accurate macroscopic shape and hydrodynamic property of supercavity by the benchmark problems of supercavities over simple objects.Finally,the cubic NLEVM was further applied to the numerical prediction of supercavitating flow around a complex submerged vehicle.The corresponding cavitation behaviors were explored in detail to provide beneficial experience for further research.展开更多
The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a comb...The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a combined space-time separa- tion involving spatial separation r and time delay T, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh-Benard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images. The understanding of the functional form of Cu(r, v) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.展开更多
基金supported by the NASA Constellation University Institutes Program(CUIP),Claudia Meyer projeGt manager
文摘Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational strat- egies for cavitation predictions under both isothermal and cryogenic conditions, with an emphasis on the attached cav- ity. The review considers alternative cavitation models along Reynolds-averaged Navier-Stokes and very lager eddy simu- lation turbulence approaches to ensure that the computational tools can handle flows of engineering interests. Observing the substantial uncertainties associated with both modeling and experimental information, surrogate modeling strategies are reviewed to assess the implications and relative impor- tance of the various modeling and materials parameters. The exchange between static and dynamic pressures under the influence of the viscous effects can have a noticeable impact on the effective shape of a solid object, which can impact the cavitation structure. The thermal effect with respect to evaporation and condensation dynamics is examined to shed light on the fluid physics associated with cryogenic cav- itation. The surrogate modeling techniques are highlighted in the context of modeling sensitivity assessment. Keywords
基金Item Sponsored by Deutsche Forschungsgemeinschaft (DFG) in form of the SFB 609 "Electromagnetic Flow Control in Metallurgy,Crystal Growth and Electrochemistry"
文摘The current work combines numerical and experimental investigations based on a small-scale mockup using the eutectic alloy GaInSn.The jet flow discharging from the submerged entry nozzle was exposed perpendicularly to a DC magnetic field across the entire wide face of the mold.Numerical calculations were performed by using the commercial package CFX with an implemented RANS-SST turbulence model.The anisotropic properties of the MHD turbulence were taken into account by specific modifications of the turbulence model.The comparison between our numerical calculations and the experimental results shows a very well agreement.In particular,the modified RANS-SST turbulence model is capable to reconstruct the peculiar phenomenon of the excitation of non-steady,non-isotropic large-scale flow perturbations caused by the application of the DC magnetic field.Another important finding of our study is the feature that the electrical boundary conditions,namely the wall conductivity ratio,have a great impact on the mold flow subjected to an external magnetic field.
基金supported by the National Natural Science Foundation of China (22208328, 22378370 and 22108261)Fundamental Research Program of Shanxi Province(20210302124618)
文摘In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.
文摘Flow characteristics around a wall-mounted square cylinder have been numerically simulated at aspect ratios (AR) ranging from 4 to 7 at Re =10 000. Four turbulence models have been compared in terms of drag coefficient (C_D). The closest result has been provided by two turbulence models, namely, k-ε Realizable and k ?ω Shear Stress Transport (SST). Hence, these models were utilized to present the flow patterns of pressure distributions, turbulent kinetic energy values, velocity magnitude values with streamlines, streamwise velocity components, crossstream velocity components and spanwise velocity components on different planes. Flow stagnation has been attained in front of the cylinder. Pressure values peaked for the upstream region. Over the cylinders, the tip vortex structure was dominant owing to the influence of the free end. Flow separation from the top front edge of the body has been obtained. The dividing streamline affected by the flow separation was highly effective in the wake region and moved nearer to the body when the aspect ratio was decreased;the reason was the wake shrinkage owing to the decreasing aspect ratio. Upwash and downwash have been seen in the cylinder wake. These two models presented similar flow patterns and drag coefficients. These drag coefficients are in good agreement with those in previous studies.
基金funded by Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2024/TK10/UKM/02/7).
文摘This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer significant advantages for urban wind applications,such as omnidirectional wind capture and a compact,ground-accessible design,they face substantial aerodynamic challenges,including dynamic stall,blade-wake interactions,and continuously varying angles of attack throughout their rotation.The review critically evaluates how CFD has been leveraged to address these challenges,detailing the modelling frameworks,simulation setups,mesh strategies,turbulence models,and boundary condition treatments adopted in the literature.Special attention is given to the comparative performance of 2-D vs.3-D simulations,static and dynamic meshing techniques(sliding,overset,morphing),and the impact of near-wall resolution on prediction fidelity.Moreover,this review maps the evolution of CFD tools in capturing key performance indicators including power coefficient,torque,flow separation,and wake dynamics,while highlighting both achievements and current limitations.The synthesis of studies reveals best practices,identifies gaps in simulation fidelity and validation strategies,and outlines critical directions for future research,particularly in high-fidelity modelling and cost-effective simulation of urban-scale VAWTs.By synthesizing insights from over a hundred referenced studies,this review serves as a consolidated resource to advance VAWT design and performance optimization through CFD.These include studies on various aspects such as blade geometry refinement,turbulence modeling,wake interaction mitigation,tip-loss reduction,dynamic stall control,and other aerodynamic and structural improvements.This,in turn,supports their broader integration into sustainable energy systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12388101,12372288,U23A2069,and 92152301).
文摘Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leveraging complex ML models,such as those developed using field inversion and machine learning(FIML),to dynamically adjust the constants within the baseline RANS model.However,the ML models often overlook the fundamental calibrations of the RANS turbulence model.Consequently,the basic calibration of the baseline RANS model is disrupted,leading to a degradation in the accuracy,particularly in basic wall-attached flows outside of the training set.To address this issue,a modified version of the Spalart-Allmaras(SA)turbulence model,known as Rubber-band SA(RBSA),has been proposed recently.This modification involves identifying and embedding constraints related to basic wall-attached flows directly into the model.It is shown that no matter how the parameters of the RBSA model are adjusted as constants throughout the flow field,its accuracy in wall-attached flows remains unaffected.In this paper,we propose a new constraint for the RBSA model,which better safeguards the law of wall in extreme conditions where the model parameter is adjusted dramatically.The resultant model is called the RBSA-poly model.We then show that when combined with FIML augmentation,the RBSA-poly model effectively preserves the accuracy of simple wall-attached flows,even when the adjusted parameters become functions of local flow variables rather than constants.A comparative analysis with the FIML-augmented original SA model reveals that the augmented RBSA-poly model reduces error in basic wall-attached flows by 50%while maintaining comparable accuracy in trained separated flows.These findings confirm the effectiveness of utilizing FIML in conjunction with the RBSA model,offering superior accuracy retention in cardinal flows.
基金supported by the Zhejiang Provincial Key Research and Development Program of China(No.2020C01020).
文摘The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges.
基金supported by the National Natural Science Foundation of China(Grant Nos.92252201 and 11721202)the Fundamental Research Funds for the Central Universities.
文摘We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.
文摘A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined jets without excess streamwise momentum are considered. The numerical results of the Standard two-equation k-ε model show that the turbulent structure can be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R> 4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallel with the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20-60. The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated, vvith distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets in strong crossflow, i. e. R ≥ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortex flow can stili be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flovv characteristics and mixing rates are well supported by experimental and field dala
基金co-supported by the National Key R&D Program of China(Nos.2017YFB0202400 and 2017YFB0202402)the National Natural Science Foundation of China(No.91741125)the Project of Newton International Fellowship Alumnus from Royal Society(No.AL120003)
文摘The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.
文摘This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...
基金This work was supported by the National Natural Science Foundation of China(91852108,11872230 and 92152301).
文摘Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.
基金supported by the National Natural Science Foundation of China (10802026)
文摘Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.
文摘The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators.
基金National Natural Science F oundation of China !( No.91880 10 )National Defense Science Foundation!( 95 J13 A .1.2 )
文摘Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
文摘The application of machine learning(ML)algorithms to turbulence modeling has shown promise over the last few years,but their application has been restricted to eddy viscosity based closure approaches.In this article,we discuss the rationale for the application of machine learning with high-fidelity turbulence data to develop models at the level of Reynolds stress transport modeling.Based on these rationales,we compare different machine learning algorithms to determine their efficacy and robustness at modeling the different transport processes in the Reynolds stress transport equations.Those data-driven algorithms include Random forests,gradient boosted trees,and neural networks.The direct numerical simulation(DNS)data for flow in channels are used both as training and testing of the ML models.The optimal hyper-parameters of the ML algorithms are determined using Bayesian optimization.The efficacy of the above-mentioned algorithms is assessed in the modeling and prediction of the terms in the Reynolds stress transport equations.It was observed that all three algorithms predict the turbulence parameters with an acceptable level of accuracy.These ML models are then applied for the prediction of the pressure strain correlation of flow cases that are different from the flows used for training,to assess their robustness and generalizability.This explores the assertion that ML-based data-driven turbulence models can overcome the modeling limitations associated with the traditional turbulence models and ML models trained with large amounts of data with different classes of flows can predict flow field with reasonable accuracy for unknown flows with similar flow physics.In addition to this verification,we carry out validation for the final ML models by assessing the importance of different input features for prediction.
基金Erfan Kadivar acknowledges the support of Shiraz University of Technology Research Council.
文摘In this work,the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated.In the present paper,Reynolds Averaged Navier Stokes(RANS)equations with the Spalart-Allmaras,SST k-ω,and SST-Trans models are used for numerical simulations.The possibility of laminar-toturbulent boundary layer transition is summarized in phase diagrams in terms of skin friction coefficient and Reynolds number.The numerical results show that SST-Trans method can detect different aspects of flow such as adverse pressure gradient and laminar-to-turbulent transition onset.Our numerical results indicate that the laminar-to-turbulent transition location on the 6:1 prolate spheroid is in a good agreement with the experimental data at high Reynolds numbers.
基金Project supported by the National Natural Science Foundation of China(Nos.12002318,11572025,11772032,and 51420105008)the Science Foundation of North University of China(No.XJJ201929)。
文摘Many recent laboratory experiments and numerical simulations support a non-equilibrium dissipation scaling in decaying turbulence before it reaches an equilibrium state.By analyzing a direct numerical simulation(DNS)database of a transitional boundary-layer flow,we show that the transition region and the non-equilibrium turbulence region,which are located in different streamwise zones,present different non-equilibrium scalings.Moreover,in the wall-normal direction,the viscous sublayer,log layer,and outer layer show different non-equilibrium phenomena which differ from those in grid-generated turbulence and transitional channel flows.These findings are expected to shed light on the modelling of various types of non-equilibrium turbulent flows.
基金supported by the National Natural Science Foundation of China(10832007)Shanghai Leading Academic Discipline Project(B206)
文摘Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical prediction of supercavitating flows,which are accompanied with large density ratio and large-scaled swirling flow structures.The applications of the NLEVM were carried out through a self-developed cavitation codes,coupled with a cavitation model based on the transport equation of liquid phase.These NLEVM were verified capable of capturing more accurate macroscopic shape and hydrodynamic property of supercavity by the benchmark problems of supercavities over simple objects.Finally,the cubic NLEVM was further applied to the numerical prediction of supercavitating flow around a complex submerged vehicle.The corresponding cavitation behaviors were explored in detail to provide beneficial experience for further research.
基金supported in part by RGC of Hong Kong SAR (HKUST-605013)
文摘The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a combined space-time separa- tion involving spatial separation r and time delay T, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh-Benard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images. The understanding of the functional form of Cu(r, v) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.