An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or p...An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.展开更多
A monitoring and comparison experiment with two types of sensors on a turbojet engine is carried out. Compared with a probe-typed sensor,which is designed successfully before,signals are collected to verify the validi...A monitoring and comparison experiment with two types of sensors on a turbojet engine is carried out. Compared with a probe-typed sensor,which is designed successfully before,signals are collected to verify the validity and better feasibility of the circular sensor.According to the signals monitored over 131h,the typical signals of 125—129 phases are analyzed.The results show that the unusual exhaust particles are carbon depositions from fuel spray nozzle.Therefore,with the electrostatic sensor,early warning can be provided for initial fault condition, as well as real-time reference for the condition-based maintenance.展开更多
A new simulation strategy is proposed for the starting process of missile turbojet engine windmill. The starting process of windmill before ignition is simulated using a radial basis function neural network (RBFNN) , ...A new simulation strategy is proposed for the starting process of missile turbojet engine windmill. The starting process of windmill before ignition is simulated using a radial basis function neural network (RBFNN) , and the acceleration process after ignition which model is a set of nonlinear equations is solved using a particle swarm optimization (PSO) algorithm. The introduction of PSO helped to tackle the problem of divergence caused by traditional iteration methods. The calculated result is in a great agreement with test data, which shows that the presented model has a high accuracy. The starting processes are simulated at different ignition times, and the results are analyzed synthetically. The analysis shows how the ignition time affects the starting performance of engine windmill. The method offers a useful tool for ignition time optimization as well as engine starting performance analysis.展开更多
The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also ...The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.展开更多
With the continuous advancement of computer and information technology,education and teaching methods have undergone profound changes.Addressing the challenges in the Engine Structure Principle course-such as its high...With the continuous advancement of computer and information technology,education and teaching methods have undergone profound changes.Addressing the challenges in the Engine Structure Principle course-such as its highly practical nature,complex principles,and difficulty in student comprehension-a simulation program for the engine oil supply regulation system was developed using digital technology.This paper analyzes key factors affecting engine fuel supply,including tank pressure,engine inlet total temperature,and fuel viscosity.By encouraging inquiry-based learning,the approach enhances students’understanding of theoretical knowledge,improves teaching efficiency,and yields positive learning outcomes.Additionally,the CDIO(Conceiving-Designing-Implementing-Operating)teaching framework is integrated into the course,strengthening students’ability to apply knowledge comprehensively and collaborate effectively in teams.展开更多
The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained...The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered.展开更多
Gas-turbines are widely used to power aero planes because they are light,compact with a high power-to-weight ratio.In the turbo jet engine,the main operating variables are:compressor pressure ratio rp and turbine inle...Gas-turbines are widely used to power aero planes because they are light,compact with a high power-to-weight ratio.In the turbo jet engine,the main operating variables are:compressor pressure ratio rp and turbine inlet temperature(TIT).These variables affect the specific thrust and specific fuel consumption(SFC),which represent the main performance parameters.In addition to the analytical work,a computer program of the General Algebraic Modeling System(GAMS)was used for analysis and optimization.The analysis shows that the specific thrust strongly depends on turbine inlet temperature(TIT),where a 10%decrease in TIT results in 6.7%decrease in specific thrust and 6.8%decrease in SFC.Furthermore,the value of optimum pressure ratio rf for maximum specific thrust increases with TIT.A 10%decrease from design TIT results in 11.43%decrease in rf.The value of optimum pressure ratio for the turbojet engine operating at Ma=0.8 and altitude Alt=13000 m,and TIT=1700 K was found to be 14.&2015 National Laboratory for Aeronautics and Astronautics.Production and hosting by Elsevier B.V.展开更多
In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 C...In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 C temperature and 1 bar pressure. Themaximum exergy point in the turbojet engine is found for the combustor in which C11H23(Jet-A1) fuel is combusted with air, while the minimum one is determined for the aircompressor head where the free air enters. The combustion chamber has the maximum fuel,product and irreversibility rates and the air compressor has the minimum fuel and product ex-ergy values, while the minimum irreversibility is found for the turbine. Maximum improvementpotential rate is found for the combustion chamber (5141.27 kW), while minimum rate is deter-mined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergyefficiency (97.20%) due to its expansion process, while combustion chamber component hasthe lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel.Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergydynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, aircompressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively.Considering all results, the combustion chamber is the primer component to be handled for bet-ter efficiency and improvement.展开更多
Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process. Diffraction method is one of the most useful measuring procedures in this case. An...Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process. Diffraction method is one of the most useful measuring procedures in this case. An investigation setup is presented enabling the determination of the substituting drop diameter in fuel aerosol stream created by aeroengine injectors. The results obtained for K 108-767, K 108-012, 37.03.9595, 16.83.0310 types are presented.展开更多
文摘An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.
基金Supported by the National Natural Science Foundation of China(60939003,61079013)the Natural Science Fund Project in Jiangsu Province(BK2011737)the Fundamental Research Funds for the Central Universities(NS2012059)
文摘A monitoring and comparison experiment with two types of sensors on a turbojet engine is carried out. Compared with a probe-typed sensor,which is designed successfully before,signals are collected to verify the validity and better feasibility of the circular sensor.According to the signals monitored over 131h,the typical signals of 125—129 phases are analyzed.The results show that the unusual exhaust particles are carbon depositions from fuel spray nozzle.Therefore,with the electrostatic sensor,early warning can be provided for initial fault condition, as well as real-time reference for the condition-based maintenance.
基金Sponsored by the National Aeronautical Science Foundation of China(20095584006)
文摘A new simulation strategy is proposed for the starting process of missile turbojet engine windmill. The starting process of windmill before ignition is simulated using a radial basis function neural network (RBFNN) , and the acceleration process after ignition which model is a set of nonlinear equations is solved using a particle swarm optimization (PSO) algorithm. The introduction of PSO helped to tackle the problem of divergence caused by traditional iteration methods. The calculated result is in a great agreement with test data, which shows that the presented model has a high accuracy. The starting processes are simulated at different ignition times, and the results are analyzed synthetically. The analysis shows how the ignition time affects the starting performance of engine windmill. The method offers a useful tool for ignition time optimization as well as engine starting performance analysis.
文摘The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.
文摘With the continuous advancement of computer and information technology,education and teaching methods have undergone profound changes.Addressing the challenges in the Engine Structure Principle course-such as its highly practical nature,complex principles,and difficulty in student comprehension-a simulation program for the engine oil supply regulation system was developed using digital technology.This paper analyzes key factors affecting engine fuel supply,including tank pressure,engine inlet total temperature,and fuel viscosity.By encouraging inquiry-based learning,the approach enhances students’understanding of theoretical knowledge,improves teaching efficiency,and yields positive learning outcomes.Additionally,the CDIO(Conceiving-Designing-Implementing-Operating)teaching framework is integrated into the course,strengthening students’ability to apply knowledge comprehensively and collaborate effectively in teams.
基金supported by the National Natural Science Foundation of China(Grant Nos.51376101&51356001)
文摘The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered.
文摘Gas-turbines are widely used to power aero planes because they are light,compact with a high power-to-weight ratio.In the turbo jet engine,the main operating variables are:compressor pressure ratio rp and turbine inlet temperature(TIT).These variables affect the specific thrust and specific fuel consumption(SFC),which represent the main performance parameters.In addition to the analytical work,a computer program of the General Algebraic Modeling System(GAMS)was used for analysis and optimization.The analysis shows that the specific thrust strongly depends on turbine inlet temperature(TIT),where a 10%decrease in TIT results in 6.7%decrease in specific thrust and 6.8%decrease in SFC.Furthermore,the value of optimum pressure ratio rf for maximum specific thrust increases with TIT.A 10%decrease from design TIT results in 11.43%decrease in rf.The value of optimum pressure ratio for the turbojet engine operating at Ma=0.8 and altitude Alt=13000 m,and TIT=1700 K was found to be 14.&2015 National Laboratory for Aeronautics and Astronautics.Production and hosting by Elsevier B.V.
文摘In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 C temperature and 1 bar pressure. Themaximum exergy point in the turbojet engine is found for the combustor in which C11H23(Jet-A1) fuel is combusted with air, while the minimum one is determined for the aircompressor head where the free air enters. The combustion chamber has the maximum fuel,product and irreversibility rates and the air compressor has the minimum fuel and product ex-ergy values, while the minimum irreversibility is found for the turbine. Maximum improvementpotential rate is found for the combustion chamber (5141.27 kW), while minimum rate is deter-mined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergyefficiency (97.20%) due to its expansion process, while combustion chamber component hasthe lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel.Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergydynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, aircompressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively.Considering all results, the combustion chamber is the primer component to be handled for bet-ter efficiency and improvement.
文摘Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process. Diffraction method is one of the most useful measuring procedures in this case. An investigation setup is presented enabling the determination of the substituting drop diameter in fuel aerosol stream created by aeroengine injectors. The results obtained for K 108-767, K 108-012, 37.03.9595, 16.83.0310 types are presented.