Multiple tuned mass dampers(MTMDs)reduce dynamic response with multiple specified frequencies of building structures.Many optimization algorithms for placement design exist,though they rarely conform to code-based ver...Multiple tuned mass dampers(MTMDs)reduce dynamic response with multiple specified frequencies of building structures.Many optimization algorithms for placement design exist,though they rarely conform to code-based verification nor produce high quality solutions without high computational effort and high complexity.This study proposes an inverse element exchange method(IEEM)with multi-level programming and compares it to a single tuned mass damper(STMD)and uniform distribution of multiple tuned mass dampers in the frequency and time domains.A ten-story shear building is used for the numerical case study.The results show that the proposed method can offer improvement over the STMD,uniform distribution of multiple tuned mass dampers,and distribution optimized by genetic algorithms(GA)with regard to minimizing the interstory drift ratio(IDR)in both the frequency and time domains and the time consumption for optimization.展开更多
To address the vibration issues of wind turbine towers,this paper proposes a bidirectional tuned bellow liquid column damper(BTBLCD).The configuration of the proposed BTBLCD is first described in detail,and its energy...To address the vibration issues of wind turbine towers,this paper proposes a bidirectional tuned bellow liquid column damper(BTBLCD).The configuration of the proposed BTBLCD is first described in detail,and its energy dissipation mechanism is derived through theoretical analysis.A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed.The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations.Finally,a 1/10 scaled model of the wind turbine tower is constructed,and the energy dissipation performance of the BTBLCD is validated using a shaking table test.The results show that the vibration energy dissipation performance of the BTBLCD outperforms that of the bidirectional tuned liquid column damper(BTLCD)in multiple directions.The shaking table test and dynamic response analysis demonstrate a maximum reduction of 61.0%in acceleration and 47.9%in displacement response.Furthermore,the vibration control and energy dissipation performance of the BTBLCD are influenced by the direction and amplitude of vibrations.This study contributes to the development of more effective and versatile vibration mitigation strategies for wind turbine tower structures in various engineering scenarios.展开更多
This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform stru...This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform structure,an equivalent single degree of freedom approach was employed.Since the mass contribution of the first mode of the platform is more than 90%,this simplification significantly reduces the computational burden while maintaining accuracy.Therefore,this structure was modeled and analyzed on a scale of 1 to 36 using the Froudian law.To address the limitations of conventional tuned liquid column gas dampers(TLCGDs),which are susceptible to the directionality of seismic excitations,BTLCGD was proposed.This innovative damper is designed to operate effectively in two orthogonal directions,thereby improving seismic performance.Through numerical simulations,the performance of both TLCGD and BTLCGD was evaluated under seismic loading.The results demonstrated that BTLCGD significantly outperforms TLCGD in terms of reducing structural responses,particularly in the direction where TLCGD is ineffective.Furthermore,BTLCGD offers advantages in terms of installation and space requirements.The results of this research offer valuable perspectives into the design and implementation of effective damping systems for offshore structures,contributing to enhanced structural integrity and safety.展开更多
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an...Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides.展开更多
A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tun...A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.展开更多
In this paper, the seismic effectiveness of a density-variable tuned liquid damper (DVTLD) with a sloping bottom is experimentally investigated through a series of shake table tests on a 1/4-scale, 3-story frame str...In this paper, the seismic effectiveness of a density-variable tuned liquid damper (DVTLD) with a sloping bottom is experimentally investigated through a series of shake table tests on a 1/4-scale, 3-story frame structure and numerically simulated by a new semi-analytical model. Special attention was given to reducing the first peak and maximum response under near- and far-field ground motions, and the robustness of a density-variable control system consisting of multiple DVTLDs with closely-spaced frequencies. Adaptable to earthquake excitations, the density-variable control system has been demonstrated to be more effective and more robust than its corresponding traditional tuned liquid damper in suppressing story drift and floor acceleration of the structure. Numerical simulations of the DVTLD-controlled structure agreed very well in phase with experimental results but somewhat overestimated the amplitude of the structural response.展开更多
Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of thi...Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of this type of northfinder was determined, and the influence of each source on northfinding result was formulated. Results and Conclusion Under the guidance of the analysis, select relevant method for each source which has different effect on result to reduce northfinding error, a type of northfinder meeting the practical requirements of user was developed.展开更多
Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic ...Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.展开更多
Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-kno...Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.展开更多
The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column...The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.展开更多
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle t...The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.展开更多
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef...High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.展开更多
Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is emp...Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.展开更多
Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed f...Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.展开更多
This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled a...This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.展开更多
Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point a...Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.展开更多
文摘Multiple tuned mass dampers(MTMDs)reduce dynamic response with multiple specified frequencies of building structures.Many optimization algorithms for placement design exist,though they rarely conform to code-based verification nor produce high quality solutions without high computational effort and high complexity.This study proposes an inverse element exchange method(IEEM)with multi-level programming and compares it to a single tuned mass damper(STMD)and uniform distribution of multiple tuned mass dampers in the frequency and time domains.A ten-story shear building is used for the numerical case study.The results show that the proposed method can offer improvement over the STMD,uniform distribution of multiple tuned mass dampers,and distribution optimized by genetic algorithms(GA)with regard to minimizing the interstory drift ratio(IDR)in both the frequency and time domains and the time consumption for optimization.
基金support for the research,authorship,and/or publication of this paper:This study is supported by the National Science Foundation of China(Grant No.52368074)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘To address the vibration issues of wind turbine towers,this paper proposes a bidirectional tuned bellow liquid column damper(BTBLCD).The configuration of the proposed BTBLCD is first described in detail,and its energy dissipation mechanism is derived through theoretical analysis.A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed.The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations.Finally,a 1/10 scaled model of the wind turbine tower is constructed,and the energy dissipation performance of the BTBLCD is validated using a shaking table test.The results show that the vibration energy dissipation performance of the BTBLCD outperforms that of the bidirectional tuned liquid column damper(BTLCD)in multiple directions.The shaking table test and dynamic response analysis demonstrate a maximum reduction of 61.0%in acceleration and 47.9%in displacement response.Furthermore,the vibration control and energy dissipation performance of the BTBLCD are influenced by the direction and amplitude of vibrations.This study contributes to the development of more effective and versatile vibration mitigation strategies for wind turbine tower structures in various engineering scenarios.
文摘This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform structure,an equivalent single degree of freedom approach was employed.Since the mass contribution of the first mode of the platform is more than 90%,this simplification significantly reduces the computational burden while maintaining accuracy.Therefore,this structure was modeled and analyzed on a scale of 1 to 36 using the Froudian law.To address the limitations of conventional tuned liquid column gas dampers(TLCGDs),which are susceptible to the directionality of seismic excitations,BTLCGD was proposed.This innovative damper is designed to operate effectively in two orthogonal directions,thereby improving seismic performance.Through numerical simulations,the performance of both TLCGD and BTLCGD was evaluated under seismic loading.The results demonstrated that BTLCGD significantly outperforms TLCGD in terms of reducing structural responses,particularly in the direction where TLCGD is ineffective.Furthermore,BTLCGD offers advantages in terms of installation and space requirements.The results of this research offer valuable perspectives into the design and implementation of effective damping systems for offshore structures,contributing to enhanced structural integrity and safety.
文摘Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides.
文摘A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.
基金U.S. National Science Foundation Under Award No. 0342020the Dean’s Fellowship Program from the University of Missouri-Rolla (renamed to Missouri University of Science and Technology in January 2008)
文摘In this paper, the seismic effectiveness of a density-variable tuned liquid damper (DVTLD) with a sloping bottom is experimentally investigated through a series of shake table tests on a 1/4-scale, 3-story frame structure and numerically simulated by a new semi-analytical model. Special attention was given to reducing the first peak and maximum response under near- and far-field ground motions, and the robustness of a density-variable control system consisting of multiple DVTLDs with closely-spaced frequencies. Adaptable to earthquake excitations, the density-variable control system has been demonstrated to be more effective and more robust than its corresponding traditional tuned liquid damper in suppressing story drift and floor acceleration of the structure. Numerical simulations of the DVTLD-controlled structure agreed very well in phase with experimental results but somewhat overestimated the amplitude of the structural response.
文摘Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of this type of northfinder was determined, and the influence of each source on northfinding result was formulated. Results and Conclusion Under the guidance of the analysis, select relevant method for each source which has different effect on result to reduce northfinding error, a type of northfinder meeting the practical requirements of user was developed.
基金Scientific Research Fund of IEM,CEA under Grant Nos.2016B09,2014B12China Natural Science Foundation under Grant Nos.51478442,51408565
文摘Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.
基金State Key Program of Natural Science Foundation of China Under Grant No.50738002
文摘Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.
文摘The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.
基金supported by a grant[MPSS-NH-2015-78]through the DisasterSafety Management Institute funded by Ministry of Public Safety and Security of Korean government
文摘The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.
文摘High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.
基金National Natural Science Foundation of China under Grant Nos.51725901 and 51639006
文摘Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.
文摘Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.
基金This research was financially supported partially by the National Science Foundation of Japan under grant No.10555173 This work was partially supported by the Scholarship from Japan Ministry of Education,Science and Culture.
文摘This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.
基金financially supported by the Fundamental Research Program of Shandong Province(Grant No.ZR2016EEQ23)the Youth Exploration Project of Shandong Province Mount Tai Scholar Advanced Disciplinary Talent Group
文摘Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.