The harmonic and interharmonic analysis recommendations are contained in the latest IEC standards on power quality. Measurement and analysis experiences have shown that great difficulties arise in the interharmonic de...The harmonic and interharmonic analysis recommendations are contained in the latest IEC standards on power quality. Measurement and analysis experiences have shown that great difficulties arise in the interharmonic detection and measurement with acceptable levels of accuracy. In order to improve the resolution of spectrum analysis, the traditional method (e.g. discrete Fourier transform) is to take more sampling cycles, e.g. 10 sampling cycles corresponding to the spectrum interval of 5 Hz while the fundamental frequency is 50 Hz. However, this method is not suitable to the interharmonic measurement, because the frequencies of interharmonic components are non-integer multiples of the fundamental frequency, which makes the measurement additionally difficult. In this paper, the tunable resolution multiple signal classification (TRMUSIC) algorithm is presented, which the spectrum can be tuned to exhibit high resolution in targeted regions. Some simulation examples show that the resolution for two adjacent frequency components is usually sufficient to measure interharmonics in power systems with acceptable computation time. The proposed method is also suited to analyze interharmonics when there exists an undesirable asynchronous deviation and additive white noise.展开更多
将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signa...将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。展开更多
针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的...针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的处理,并将超分辨阵列信号处理方法应用到目标的参数估计中,从而把目标距离和速度的估计等效成阵列中二维参数的估计,解决了由于载频重频联合捷变所带来的目标参数估计难题。仿真实验表明,所提方法能有效实现对目标距离和速度的超分辨估计。展开更多
MUSIC(Multiple Signal Classification)是一种超分辨率的DOA(Direction of Arrival)估计算法,其分辨率随着天线接收信号的信噪比的增大而增大。在低信噪比条件下MUSIC算法的分辨率快速下降,为解决此问题提出了一种改进的MUSIC算法,使...MUSIC(Multiple Signal Classification)是一种超分辨率的DOA(Direction of Arrival)估计算法,其分辨率随着天线接收信号的信噪比的增大而增大。在低信噪比条件下MUSIC算法的分辨率快速下降,为解决此问题提出了一种改进的MUSIC算法,使它在低信噪比条件下有较高的分辨率。通过计算机仿真验证了改进后的算法在低信噪比条件下具有很高的分辨率,在信噪比高的条件下其分辨率也大于基本的MUSIC算法。展开更多
文摘The harmonic and interharmonic analysis recommendations are contained in the latest IEC standards on power quality. Measurement and analysis experiences have shown that great difficulties arise in the interharmonic detection and measurement with acceptable levels of accuracy. In order to improve the resolution of spectrum analysis, the traditional method (e.g. discrete Fourier transform) is to take more sampling cycles, e.g. 10 sampling cycles corresponding to the spectrum interval of 5 Hz while the fundamental frequency is 50 Hz. However, this method is not suitable to the interharmonic measurement, because the frequencies of interharmonic components are non-integer multiples of the fundamental frequency, which makes the measurement additionally difficult. In this paper, the tunable resolution multiple signal classification (TRMUSIC) algorithm is presented, which the spectrum can be tuned to exhibit high resolution in targeted regions. Some simulation examples show that the resolution for two adjacent frequency components is usually sufficient to measure interharmonics in power systems with acceptable computation time. The proposed method is also suited to analyze interharmonics when there exists an undesirable asynchronous deviation and additive white noise.
文摘将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。
文摘针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的处理,并将超分辨阵列信号处理方法应用到目标的参数估计中,从而把目标距离和速度的估计等效成阵列中二维参数的估计,解决了由于载频重频联合捷变所带来的目标参数估计难题。仿真实验表明,所提方法能有效实现对目标距离和速度的超分辨估计。
文摘MUSIC(Multiple Signal Classification)是一种超分辨率的DOA(Direction of Arrival)估计算法,其分辨率随着天线接收信号的信噪比的增大而增大。在低信噪比条件下MUSIC算法的分辨率快速下降,为解决此问题提出了一种改进的MUSIC算法,使它在低信噪比条件下有较高的分辨率。通过计算机仿真验证了改进后的算法在低信噪比条件下具有很高的分辨率,在信噪比高的条件下其分辨率也大于基本的MUSIC算法。