When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes ...When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes an improved algorithm based on classification and user trust.It firstly classifies all the ratings by the categories of items.And then,for each category,it evaluates the trustworthy degree of each user on the category and imposes the degree on the ratings of the user.Finally,the algorithm explores the similarities between users,finds the nearest neighbors,and makes recommendations within each category.Simulations show that the improved algorithm outperforms the traditional collaborative filtering algorithms and enhances the accuracy of recommendation.展开更多
We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least squares problems. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the ...We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least squares problems. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the objective function under certain conditions. Preliminary numerical experiments show the efficiency of the proposed algorithm for finding zeros of a system of polynomial equations with high degrees on the sphere and solving differential variational inequalities.展开更多
基金supported by Phase 4,Software Engineering(Software Service Engineering)under Grant No.XXKZD1301
文摘When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes an improved algorithm based on classification and user trust.It firstly classifies all the ratings by the categories of items.And then,for each category,it evaluates the trustworthy degree of each user on the category and imposes the degree on the ratings of the user.Finally,the algorithm explores the similarities between users,finds the nearest neighbors,and makes recommendations within each category.Simulations show that the improved algorithm outperforms the traditional collaborative filtering algorithms and enhances the accuracy of recommendation.
基金supported by Hong Kong Research Grant Council(Grant No.Poly U5001/12p)National Natural Science Foundation of China(Grant No.11101231)
文摘We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least squares problems. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the objective function under certain conditions. Preliminary numerical experiments show the efficiency of the proposed algorithm for finding zeros of a system of polynomial equations with high degrees on the sphere and solving differential variational inequalities.