We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the...We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.展开更多
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin...To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.展开更多
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p...The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.展开更多
The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of ke...The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques.展开更多
A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states...A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
COMPUTATIONAL knowledge vision[1]is emphasized as a novel perspective or field in this paper.It first proposes the visual hierarchy and its connection to knowledge,stating that knowledge is a justified true belief.To ...COMPUTATIONAL knowledge vision[1]is emphasized as a novel perspective or field in this paper.It first proposes the visual hierarchy and its connection to knowledge,stating that knowledge is a justified true belief.To further the previous research,we concisely summarize our recent works and suggest a new direction that knowledge is also a thought framework in vision.展开更多
This study takes shale samples from the Jiaoshiba block in the Fuling shale gas field of the Sichuan Basin,and uses the true triaxial testing system to conduct a series of mechanical experiments under deep shale reser...This study takes shale samples from the Jiaoshiba block in the Fuling shale gas field of the Sichuan Basin,and uses the true triaxial testing system to conduct a series of mechanical experiments under deep shale reservoir conditions after shale hydration.Stress-strain data and mechanical parameters of shale after hydration under high temperature and high pressure were obtained to investigate the effects of reservoir temperature,hydration time and horizontal stress difference on the mechanical strength of shale after hydration.By using nonlinear regression and interpolation methods,a prediction model for the mechanical strength of shale after hydration was constructed,and the mechanical strength chart of deep shale under high stress difference was plotted.First,higher hydration temperature,longer hydration reaction time,and greater horizontal stress difference cause shale to enter the yield stage earlier during the compression process after hydration and to exhibit more prominent plastic characteristics,lower peak strength,peak strain,residual strength and elastic modulus,and higher Poisson's ratio.Second,the longer the hydration time,the smaller the impact of hydration temperature on the mechanical strength of deep shale is.As the horizontal stress difference increases,the peak strength and residual strength weaken intensely,and the peak strain,elastic modulus and Poisson's ratio deteriorate slowly.Third,the mechanical strength of shale decreases significantly in the first 5 days of hydration,but gradually stabilizes as the hydration time increases.Fourth,the visual mechanical strength chart helps to understand the post-fracturing dynamics in deep shale gas reservoir fracturing site and adjust the drainage and production plan in time.展开更多
Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and int...Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).展开更多
Unveiling the underlying physical mechanisms governing the fracture of brittle rocks is imperative for preventing rockbursts.The novelty of this study lies in the analysis of the dynamic response process of rock three...Unveiling the underlying physical mechanisms governing the fracture of brittle rocks is imperative for preventing rockbursts.The novelty of this study lies in the analysis of the dynamic response process of rock three-dimensional(3D)deformation under true triaxial stress,and the surge behavior of timedependent multifractal spectrum has been successfully used to warn of progressive failure inside the rock.Firstly,this study analyzed the dynamic adjustment trajectory of rock deformation,specifically lateral strain,within the framework of the Poisson effect.This analysis highlighted the intricate dependence of rock mechanical properties on the intermediate principal stress.Secondly,by defining the crack interval function(ICF),this study compared the disparities between the two crack growth stages(strengthening stage and weakening stage)under varying stress levels.It was found that the fracture activity of granite system has significant multifractal characteristics.Notably,the multifractal spectrum emerges as a valuable tool for characterizing the distinct fracture properties of rocks,encompassing both the crack scale and the associated energy.Finally,a quantitative criterion grounded in the multifractal parameters of the acoustic emission(AE)time series was formulated,and it indicates that the abrupt changes observed in the time-dependent fractal spectra can serve as precursor indicators for the progressive development of rockbursts.展开更多
A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear as...A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear astrophysics.It consisted of a well-type HPGe detector surrounded by optimized multi-layer shielding,which reduced the laboratory background counting rate by 99.5%and enabled a sensitivity edge as low as 0.044 Bq for the 477.6 KeV γ line of ^(7)Be.The near 4π geometry of the HPGe detector introduces a severe true coincidence summing(TCS)effect along with its high detection efficiency.To determine the intrinsic detection efficiency and correct for the TCS effect,a Monte Carlo simulation method was developed with the Geant4 toolkit.The detector model was optimized by matching the simulated full energy peak(FEP)statistics with those of a ^(137)Cs monoenergetic source and calibrated ^(55,57,58)Co sources produced by low-energy proton beam bombardment of natural iron.The intrinsic detection efficiency curve was obtained,and an algorithm for the correction of the TCS effect was programmed using decay data from the ENSDF library and Nuclear Wallet Cards.The GNAS fulfills the requirements of the ongoing activation measurement of proton-and alpha-induced reactions in nuclear astrophysics on the ground and at the Jinping Underground Nuclear Astrophysics(JUNA)facility.展开更多
In deep underground resources mining engineering,rock mass exists in a three-dimensional environment of high stress,high fluid pressure,and high temperature.With the stress disturbance of mining engineering,it is easy...In deep underground resources mining engineering,rock mass exists in a three-dimensional environment of high stress,high fluid pressure,and high temperature.With the stress disturbance of mining engineering,it is easy to trigger high-energy coal-rock dynamic disasters,which severely restricts the safe and efficient development of deep resources.To investigate the non-linear fracture evolution process and key precursor laws of the coal-rock mass in the process of deep mining,an experimental study was conducted based on the true three-dimensional disturbance stress simulation experiment system.Results showed that the disturbance disaster process of the coal-rock mass has significant stages,and the corresponding acoustic emission(AE)signals also show regular changes.The necessary condition for the occurrence of coal-rock dynamic disasters is that the coupling of the maximum static stress and disturbance stress amplitude should exceed the damage threshold value,the increase ofσ_(2)can reduce the occurrence probability of disaster,and the influence of disturbance frequency on disaster intensity is transition.There are obvious stages in the damage accumulation process of stress-disturbed rock mass,including:damage weakening stage,no damage stage,and accelerated damage stage.The brief AE event calm period and the rapid decline of high average frequency value accompanied with the surge in the low-rise time/amplitude value before the disaster can be regarded as the key precursors of the rock dynamic disaster.The research results are crucial for understanding the disaster evolution of rock mass rupture disturbed by three-dimensional stress in deep engineering,and for the early warning and prevention of coal-rock dynamic disasters.展开更多
Dysphagia caused by true bulbar paralysis after stroke is a common and serious complication that severely affects patients’eating ability and quality of life,and significantly increases the risk of complications such...Dysphagia caused by true bulbar paralysis after stroke is a common and serious complication that severely affects patients’eating ability and quality of life,and significantly increases the risk of complications such as pneumonia and malnutrition.Electroacupuncture at swallowing points stimulates Swallowing 1 and Swallowing 2 acupoints,acting on key areas such as the glossopharyngeal nerve and vagus nerve,stimulating the reconstruction of nerve reflex arcs and the recovery of swallowing function.Therefore,this article analyzes the mechanism and clinical efficacy of electroacupuncture at swallowing points for the treatment of dysphagia caused by true bulbar paralysis after stroke,aiming to provide theoretical support and practical basis for clinical application.展开更多
The long-term stability of rocks is crucial for ensuring safety in deep engineering,where the prolonged influence of shear loading is a key factor in delayed engineering disasters.Despite its significance,research on ...The long-term stability of rocks is crucial for ensuring safety in deep engineering,where the prolonged influence of shear loading is a key factor in delayed engineering disasters.Despite its significance,research on time-dependent shear failures under true triaxial stress to reflect in situ stress conditions remains limited.This study presents laboratory shear creep measurements on intact sandstone samples under constant normal load(CNL)and constant normal stiffness(CNS)conditions,which are typical of shallow and deep engineering cases,respectively.Our investigation focuses on the effects of various lateral stresses and boundary conditions on the mechanical behaviors and failure modes of the rock samples.Results indicate that lateral stress significantly reduces shear creep deformation and decreases creep rates.Without lateral stress constraints,the samples are prone to lateral tensile fractures leading to macroscopic spalling,likely due to“shear-induced tensile”stress.This failure behavior is mitigated under lateral stress constraints.Additionally,compared to CNL condition,samples under CNS condition demonstrate enhanced long-term shear resistance,reduced shear creep rates,and rougher shear failure surfaces.These findings suggest the need to improve our understanding of rock mass stability and to develop effective disaster prevention and mitigation strategies in engineering applications.展开更多
After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimension...After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimensional stress redistribution and multi-directional dynamic construction interference.However,the shear mechanical behavior,fracture evolution mechanism and precursor characteristics of rockmass under true triaxial stress and multi-directional coupling disturbance are not unclear.Therefore,this study carried out true triaxial shear tests on limestone intermittent structural planes under uni-,bi-and tri-directional coupling disturbances to analyze its mechanical behavior,fracture evolution mechanism and precursor characteristics.The results show that as the disturbance direction increase,the shear strength of limestone generally decreases,while the roughness of structural planes and the degree of anisotropy generally exhibit an increasing trend.The proportion of shear cracks on the structural plane increases with the increase of shear stress.The disturbance strain rate before failure shows a U-shaped trend.Near to disturbance failure,there were more high-energy and high-amplitude acoustic emission events near the structural plane,and b-value drops rapidly below 1,while lgN/b ratio increased to above 3.These findings provide experimental recognition and theoretical support for assessing the stability of rockmass under blasting excavation.展开更多
This study employs the framework of translator behavior criticism to conduct a systematic examination of Julia Lovell’s English translation of The True Story of Ah Q,utilizing the“intra-translation and extra-transla...This study employs the framework of translator behavior criticism to conduct a systematic examination of Julia Lovell’s English translation of The True Story of Ah Q,utilizing the“intra-translation and extra-translation dichotomy.”The research investigates how extra-translation factors—such as the translator’s identity,translation motivations,and target readership positioning—shape the formation of the translated text.Through an analysis of intra-translation elements,including linguistic stylistic features,strategies for handling culture-loaded terms,and the use of paratexts,the study reveals the dynamic balance of Lovell’s translation within the“truth-seeking—utility-attaining”continuum.The findings demonstrate that as a Western sinologist-translator,Julia Lovell’s cultural identity,combined with the market-oriented approach of Penguin Books,has collectively shaped a distinctly“reader-oriented”characteristic in her translation.In rendering culture-specific items,she predominantly adopts domesticating strategies,enhancing readability through simplified sentence structures and other accessibility measures to achieve utilitarian goals.Simultaneously,the translator retains an appropriate degree of foreignness in the treatment of key cultural concepts,reflecting a dialectical balance between“authorial fidelity”and“reader adaptation.”展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ...The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects.展开更多
The failure phenomenon of thin-layered rock tunnels not only exhibits asymmetric spatial characteristics,but also significant time-dependent characteristics under high in-situ stress,which is attributed to the time-de...The failure phenomenon of thin-layered rock tunnels not only exhibits asymmetric spatial characteristics,but also significant time-dependent characteristics under high in-situ stress,which is attributed to the time-dependent fracture of thin-layered rocks.This paper conducted a series of true triaxial creep compression tests on typical thin-layered rock siliceous slate with acoustic emission technique to reveal its anisotropic time-dependent fracture characteristics.The anisotropic long-term strength,creep fracturing process,and fracture orientation characteristics of thin-layered rocks under different loading angles(b,u)and intermediate principal stress were summarized.A three-dimensional(3D)non-linear visco-plastic creep model for thin-layered rock was developed to simulate its anisotropic creep behavior.The time-dependent fracturing of rocks during true triaxial creep loading is reflected through the change of equivalent strain based on an improved Euler iteration method.By constructing the plastic potential function and overstress index related to loading angles and stress state,the anisotropic timedependent fracturing process and propagation of thin-layered rocks under different loading angles and intermediate principal stress are expounded.The model was validated experimentally to show it can reflect the long-term strength and creep deformation characteristics of thin-layered rocks under true triaxial compression.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,92480001,12134001,12304418,12274130,12274133,12474378,and 12404378)the National Key R&D Program of China(Grant Nos.2022YFA1404600 and 2022YFA1205100)+2 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005)。
文摘We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.
基金financially supported by the National Natural Science Foundation of China(Nos.51874236 and 52174207)Shaanxi Science and Technology Innovation Team(No.2022TD02)Henan University of Science and Technology PhD Funded Projects(No.B2025-9)。
文摘To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.
基金supported by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT16),China.
文摘The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.
基金supported by the National Natural Science Foundation of China(Grant No.52104060)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QE015).
文摘The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques.
基金supports from the National Natural Science Foundation of China (Grant Nos.52004143 and 52374095)the open fund for the Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No.SKLMRDPC21KF06).
文摘A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
基金supported in part by the Natural Science Foundation of China(62303361)in part by the Hainan Provincial Natural Science Foundation of China(623QN266)+2 种基金the Fundamental Research Funds for the Central Universities(WUT:233110002)in part by the University-Industry Collaborative Education Program(231002531131826)in part by the National Key R&D Program of China(2018AAA0101502)
文摘COMPUTATIONAL knowledge vision[1]is emphasized as a novel perspective or field in this paper.It first proposes the visual hierarchy and its connection to knowledge,stating that knowledge is a justified true belief.To further the previous research,we concisely summarize our recent works and suggest a new direction that knowledge is also a thought framework in vision.
基金Supported by the National Natural Science Foundation of China(U24A2084,U21B2071)Science and Technology Cooperation Project of CNPC-Southwest Petroleum University Innovation Consortium(2020CX030201)。
文摘This study takes shale samples from the Jiaoshiba block in the Fuling shale gas field of the Sichuan Basin,and uses the true triaxial testing system to conduct a series of mechanical experiments under deep shale reservoir conditions after shale hydration.Stress-strain data and mechanical parameters of shale after hydration under high temperature and high pressure were obtained to investigate the effects of reservoir temperature,hydration time and horizontal stress difference on the mechanical strength of shale after hydration.By using nonlinear regression and interpolation methods,a prediction model for the mechanical strength of shale after hydration was constructed,and the mechanical strength chart of deep shale under high stress difference was plotted.First,higher hydration temperature,longer hydration reaction time,and greater horizontal stress difference cause shale to enter the yield stage earlier during the compression process after hydration and to exhibit more prominent plastic characteristics,lower peak strength,peak strain,residual strength and elastic modulus,and higher Poisson's ratio.Second,the longer the hydration time,the smaller the impact of hydration temperature on the mechanical strength of deep shale is.As the horizontal stress difference increases,the peak strength and residual strength weaken intensely,and the peak strain,elastic modulus and Poisson's ratio deteriorate slowly.Third,the mechanical strength of shale decreases significantly in the first 5 days of hydration,but gradually stabilizes as the hydration time increases.Fourth,the visual mechanical strength chart helps to understand the post-fracturing dynamics in deep shale gas reservoir fracturing site and adjust the drainage and production plan in time.
基金Project(2022m07020007)supported by the Key Research and Development Projects of Anhui Province,ChinaProjects(52174102,52074006,51404011,51874002,51974009)supported by the National Natural Science Foundation of China+1 种基金Project(2024cx1017)supported by the Graduate Innovation Fund of Anhui University of Science and Technology,ChinaProject(2024AH040067)supported by the Natural Science Research Project of Anhui Educational Committee,China。
文摘Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).
基金funding support from the National Natural Science Foundation of China(Grant No.U2034207)the Natural Science Foundation of Hebei Province(Grant No.E2021210099).
文摘Unveiling the underlying physical mechanisms governing the fracture of brittle rocks is imperative for preventing rockbursts.The novelty of this study lies in the analysis of the dynamic response process of rock three-dimensional(3D)deformation under true triaxial stress,and the surge behavior of timedependent multifractal spectrum has been successfully used to warn of progressive failure inside the rock.Firstly,this study analyzed the dynamic adjustment trajectory of rock deformation,specifically lateral strain,within the framework of the Poisson effect.This analysis highlighted the intricate dependence of rock mechanical properties on the intermediate principal stress.Secondly,by defining the crack interval function(ICF),this study compared the disparities between the two crack growth stages(strengthening stage and weakening stage)under varying stress levels.It was found that the fracture activity of granite system has significant multifractal characteristics.Notably,the multifractal spectrum emerges as a valuable tool for characterizing the distinct fracture properties of rocks,encompassing both the crack scale and the associated energy.Finally,a quantitative criterion grounded in the multifractal parameters of the acoustic emission(AE)time series was formulated,and it indicates that the abrupt changes observed in the time-dependent fractal spectra can serve as precursor indicators for the progressive development of rockbursts.
基金supported by the National Key Research and Development Project(No.2022YFA1602301)the National Natural Science Foundation of China(Nos.U2267205 and 12275361)the Continuous-Support Basic Scientific Research Project.
文摘A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear astrophysics.It consisted of a well-type HPGe detector surrounded by optimized multi-layer shielding,which reduced the laboratory background counting rate by 99.5%and enabled a sensitivity edge as low as 0.044 Bq for the 477.6 KeV γ line of ^(7)Be.The near 4π geometry of the HPGe detector introduces a severe true coincidence summing(TCS)effect along with its high detection efficiency.To determine the intrinsic detection efficiency and correct for the TCS effect,a Monte Carlo simulation method was developed with the Geant4 toolkit.The detector model was optimized by matching the simulated full energy peak(FEP)statistics with those of a ^(137)Cs monoenergetic source and calibrated ^(55,57,58)Co sources produced by low-energy proton beam bombardment of natural iron.The intrinsic detection efficiency curve was obtained,and an algorithm for the correction of the TCS effect was programmed using decay data from the ENSDF library and Nuclear Wallet Cards.The GNAS fulfills the requirements of the ongoing activation measurement of proton-and alpha-induced reactions in nuclear astrophysics on the ground and at the Jinping Underground Nuclear Astrophysics(JUNA)facility.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52374222 and 52104209)Basic and applied basic research project of Guangdong Province(Grant No.2024A1515010992).
文摘In deep underground resources mining engineering,rock mass exists in a three-dimensional environment of high stress,high fluid pressure,and high temperature.With the stress disturbance of mining engineering,it is easy to trigger high-energy coal-rock dynamic disasters,which severely restricts the safe and efficient development of deep resources.To investigate the non-linear fracture evolution process and key precursor laws of the coal-rock mass in the process of deep mining,an experimental study was conducted based on the true three-dimensional disturbance stress simulation experiment system.Results showed that the disturbance disaster process of the coal-rock mass has significant stages,and the corresponding acoustic emission(AE)signals also show regular changes.The necessary condition for the occurrence of coal-rock dynamic disasters is that the coupling of the maximum static stress and disturbance stress amplitude should exceed the damage threshold value,the increase ofσ_(2)can reduce the occurrence probability of disaster,and the influence of disturbance frequency on disaster intensity is transition.There are obvious stages in the damage accumulation process of stress-disturbed rock mass,including:damage weakening stage,no damage stage,and accelerated damage stage.The brief AE event calm period and the rapid decline of high average frequency value accompanied with the surge in the low-rise time/amplitude value before the disaster can be regarded as the key precursors of the rock dynamic disaster.The research results are crucial for understanding the disaster evolution of rock mass rupture disturbed by three-dimensional stress in deep engineering,and for the early warning and prevention of coal-rock dynamic disasters.
文摘Dysphagia caused by true bulbar paralysis after stroke is a common and serious complication that severely affects patients’eating ability and quality of life,and significantly increases the risk of complications such as pneumonia and malnutrition.Electroacupuncture at swallowing points stimulates Swallowing 1 and Swallowing 2 acupoints,acting on key areas such as the glossopharyngeal nerve and vagus nerve,stimulating the reconstruction of nerve reflex arcs and the recovery of swallowing function.Therefore,this article analyzes the mechanism and clinical efficacy of electroacupuncture at swallowing points for the treatment of dysphagia caused by true bulbar paralysis after stroke,aiming to provide theoretical support and practical basis for clinical application.
基金support from the National Natural Science Foundation of China(Grant No.52209125).
文摘The long-term stability of rocks is crucial for ensuring safety in deep engineering,where the prolonged influence of shear loading is a key factor in delayed engineering disasters.Despite its significance,research on time-dependent shear failures under true triaxial stress to reflect in situ stress conditions remains limited.This study presents laboratory shear creep measurements on intact sandstone samples under constant normal load(CNL)and constant normal stiffness(CNS)conditions,which are typical of shallow and deep engineering cases,respectively.Our investigation focuses on the effects of various lateral stresses and boundary conditions on the mechanical behaviors and failure modes of the rock samples.Results indicate that lateral stress significantly reduces shear creep deformation and decreases creep rates.Without lateral stress constraints,the samples are prone to lateral tensile fractures leading to macroscopic spalling,likely due to“shear-induced tensile”stress.This failure behavior is mitigated under lateral stress constraints.Additionally,compared to CNL condition,samples under CNS condition demonstrate enhanced long-term shear resistance,reduced shear creep rates,and rougher shear failure surfaces.These findings suggest the need to improve our understanding of rock mass stability and to develop effective disaster prevention and mitigation strategies in engineering applications.
基金support received from the National Natural Science Foundation of China(Nos.52274145,52469019,and 52109119)the Guangxi Natural Science Foundation(No.2025GXNSFAA069165)the Chinese Postdoctoral Science Fund Project(No.2022M723408).
文摘After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimensional stress redistribution and multi-directional dynamic construction interference.However,the shear mechanical behavior,fracture evolution mechanism and precursor characteristics of rockmass under true triaxial stress and multi-directional coupling disturbance are not unclear.Therefore,this study carried out true triaxial shear tests on limestone intermittent structural planes under uni-,bi-and tri-directional coupling disturbances to analyze its mechanical behavior,fracture evolution mechanism and precursor characteristics.The results show that as the disturbance direction increase,the shear strength of limestone generally decreases,while the roughness of structural planes and the degree of anisotropy generally exhibit an increasing trend.The proportion of shear cracks on the structural plane increases with the increase of shear stress.The disturbance strain rate before failure shows a U-shaped trend.Near to disturbance failure,there were more high-energy and high-amplitude acoustic emission events near the structural plane,and b-value drops rapidly below 1,while lgN/b ratio increased to above 3.These findings provide experimental recognition and theoretical support for assessing the stability of rockmass under blasting excavation.
文摘This study employs the framework of translator behavior criticism to conduct a systematic examination of Julia Lovell’s English translation of The True Story of Ah Q,utilizing the“intra-translation and extra-translation dichotomy.”The research investigates how extra-translation factors—such as the translator’s identity,translation motivations,and target readership positioning—shape the formation of the translated text.Through an analysis of intra-translation elements,including linguistic stylistic features,strategies for handling culture-loaded terms,and the use of paratexts,the study reveals the dynamic balance of Lovell’s translation within the“truth-seeking—utility-attaining”continuum.The findings demonstrate that as a Western sinologist-translator,Julia Lovell’s cultural identity,combined with the market-oriented approach of Penguin Books,has collectively shaped a distinctly“reader-oriented”characteristic in her translation.In rendering culture-specific items,she predominantly adopts domesticating strategies,enhancing readability through simplified sentence structures and other accessibility measures to achieve utilitarian goals.Simultaneously,the translator retains an appropriate degree of foreignness in the treatment of key cultural concepts,reflecting a dialectical balance between“authorial fidelity”and“reader adaptation.”
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金supported by Natural Science Foundation of China(Grant No.52278333)the Fundamental Research Funds for the Central Universities(Grant No.N2101021)The work is under the framework of the 111 Project(Grant No.B17009)and Sino-Franco Joint Research Laboratory on Multiphysics and Multiscale Rock Mechanics.
文摘The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects.
基金the financial support from the 111 Project(Grant No.B17009)the Liao Ning Revitalization Talents Program(Grant No.XLYCYSZX1902).
文摘The failure phenomenon of thin-layered rock tunnels not only exhibits asymmetric spatial characteristics,but also significant time-dependent characteristics under high in-situ stress,which is attributed to the time-dependent fracture of thin-layered rocks.This paper conducted a series of true triaxial creep compression tests on typical thin-layered rock siliceous slate with acoustic emission technique to reveal its anisotropic time-dependent fracture characteristics.The anisotropic long-term strength,creep fracturing process,and fracture orientation characteristics of thin-layered rocks under different loading angles(b,u)and intermediate principal stress were summarized.A three-dimensional(3D)non-linear visco-plastic creep model for thin-layered rock was developed to simulate its anisotropic creep behavior.The time-dependent fracturing of rocks during true triaxial creep loading is reflected through the change of equivalent strain based on an improved Euler iteration method.By constructing the plastic potential function and overstress index related to loading angles and stress state,the anisotropic timedependent fracturing process and propagation of thin-layered rocks under different loading angles and intermediate principal stress are expounded.The model was validated experimentally to show it can reflect the long-term strength and creep deformation characteristics of thin-layered rocks under true triaxial compression.