Statistical characteristics and the classification of the topside ionospheric mid-latitude trough are systemically analyzed,using observations from the Defense Meteorological Satellite Program F18(DMSP-F18)satellite.T...Statistical characteristics and the classification of the topside ionospheric mid-latitude trough are systemically analyzed,using observations from the Defense Meteorological Satellite Program F18(DMSP-F18)satellite.The data was obtained at an altitude of around 860 km in near polar orbit,throughout 2013.Our study identified the auroral boundary based on the in-situ electron density and electron spectrum,allowing us to precisely determine the location of the mid-latitude trough.This differs from most previous works,which only use Total Electron Content(TEC)or in-situ electron density.In our study,the troughs exhibited a higher occurrence rate in local winter than in summer,and extended to lower latitudes with increasing geomagnetic activity.It was found that the ionospheric mid-latitude trough,which is associated with temperature changes or enhanced ion drift,exhibited distinct characteristics.Specifically,the ionospheric mid-latitude troughs related to electron temperature(Te)peak were located more equatorward of auroral oval boundary in winter than in summer.The ionospheric mid-latitude troughs related to Te-maximum were less frequently observed at 60−70°S magnetic latitude and 90−240°E longitude.Furthermore,the troughs related to ion temperature(Ti)maximums were observed at relatively higher latitudes,occurring more frequently in winter.In addition,the troughs related to ion velocity(Vi)maximums could be observed in all seasons.The troughs with the maximum-Ti and maximum-Vi were located closer to the equatorward boundary of the auroral oval at the nightside,and in both hemispheres.This implies that enhanced ion drift velocity contributes to increased collisional frictional heating and enhanced ion temperatures,resulting in a density depletion within the trough region.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thio...BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thiopurines on vedolizumab trough concentrations is unknown.AIM To investigate the exposure-response relationship of vedolizumab and the impact of thiopurine withdrawal in UC patients who have achieved sustained clinical and endoscopic remission during maintenance therapy.METHODS This is a post-hoc analysis of prospective randomized clinical trial(VIEWS)involving UC patients across 8 centers in Australia from 2018 to 2022.Patients in clinical and endoscopic remission were randomized to continue or withdraw thiopurine while receiving vedolizumab.We evaluated vedolizumab serum trough concentrations,presence of anti-vedolizumab antibodies,and clinical outcomes over 48 weeks to assess exposure-response asso-ciation and impact of thiopurine withdrawal.RESULTS There were 62 UC participants with mean age of 43.4 years and 42%were females.All participants received vedolizumab as maintenance therapy with 67.7%withdrew thiopurine.Vedolizumab serum trough concentrations remained stable over 48 weeks regardless of thiopurine use,with no anti-vedolizumab antibodies detected.Pa-tients with clinical remission had higher trough concentrations at week 48.In quartile analysis,a threshold of>11.3μg/mL was associated with sustained clinical remission,showing a sensitivity of 82.4%,specificity of 60.0%,and an area of receiver operating characteristic of 0.71(95%CI:0.49-0.93).Patients discontinuing thiopurine required higher vedolizumab concentrations for achieving remission.CONCLUSION A positive exposure-response relationship between vedolizumab trough concentrations and UC outcomes suggests that monitoring drug levels may be beneficial.While thiopurine did not influence vedolizumab levels,its with-drawal may necessitate higher vedolizumab trough concentrations to maintain remission.展开更多
Renewable energy resources,including geothermal,are crucial for sustainable environmental management and climate change mitigation,offering clean,reliable,and low-emission alternatives to fossil fuels that reduce gree...Renewable energy resources,including geothermal,are crucial for sustainable environmental management and climate change mitigation,offering clean,reliable,and low-emission alternatives to fossil fuels that reduce greenhouse gases and support ecological balance.In this study,geographic information system(GIS)predictive analysis was employed to explore geothermal prospects,promoting environmental sustainability by reducing the dependence on fossil energy resources.Spatial and statistical analysis including the attribute correlation analysis was used to evaluate the relationship between exploration data and geothermal energy resources represented by hot springs.The weighted sum model was then used to develop geothermal predictive maps while the accuracy of prediction was determined using the receiver operating characteristic/area under curve(ROC/AUC)analysis.Based on the attribute correlation analysis,exploration data relating to geological structures,host rock(Asu River Group)and sedimentary contacts were the most critical parameters for mapping geothermal resources.These parameters were characterized by a statistical association of 0.52,0.48,and 0.46 with the known geothermal occurrences.Spatial data integration reveals the central part of the study location as the most prospective zone for geothermal occurrences.This zone occupies 14.76%of the study location.Accuracy assessment using the ROC/AUC analysis suggests an efficiency of 81.5%for the weight sum model.GIS-based multi-criteria analysis improves the identification and evaluation of geothermal resources,leading to better decision-making.展开更多
Based on the basic data of drilling,logging,testing and geological experiments,the geological characteristics of the Permian Dalong Formation marine shales in the northern Sichuan Basin and the factors controlling sha...Based on the basic data of drilling,logging,testing and geological experiments,the geological characteristics of the Permian Dalong Formation marine shales in the northern Sichuan Basin and the factors controlling shale gas enrichment and high yield are studied.The results are obtained in four aspects.First,the high-quality shale of the Dalong Formation was formed after the deposition of the Permian Wujiaping Formation,and it is developed in the Kaijiang-Liangping trough in the northern part of Sichuan Basin,where deep-water continental shelf facies and deep-water reduction environment with thriving siliceous organisms have formed the black siliceous shale rich in organic matter.Second,the Dalong Formation shale contains both organic and inorganic pores,with stratification of alternated brittle and plastic minerals.In addition to organic pores,a large number of inorganic pores are developed even in ultra-deep(deeper than 4500 m)layers,contributing a total porosity of more than 5%,which significantly expands the storage space for shale gas.Third,the limestone at the roof and floor of the Dalong Formation acted as seal rock in the early burial and hydrocarbon generation stage,providing favorable conditions for the continuous hydrocarbon generation and rich gas preservation in shale interval.In the later reservoir stimulation process,it was beneficial to the lateral extension of the fractures,so as to achieve the optimal stimulation performance and increase the well-controlled resources.Combining the geological,engineering and economic conditions,the favorable area with depth less than 5500 m is determined to be 1800 km2,with resources of 5400×10^(8) m^(3).Fourth,the shale reservoirs of the Dalong Formation are thin but rich in shale gas.The syncline zone far away from the main faults in the high and steep tectonic zone,eastern Sichuan Basin,with depth less than 5500 m,is the most favorable target for producing the Permian shale gas under the current engineering and technical conditions.It mainly includes the Nanya syncline,Tanmuchang syncline and Liangping syncline.展开更多
This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a t...This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype.展开更多
This paper presents some results of stress field reconstruction in the Nankai Trough subduction zone located within the area bounded by 136.3°–137°E and 33°–33.5°N where 12 scientific wells were ...This paper presents some results of stress field reconstruction in the Nankai Trough subduction zone located within the area bounded by 136.3°–137°E and 33°–33.5°N where 12 scientific wells were drilled during Nankai Trough Seismogenic Zone Experiment expeditions of the Integrated Ocean Drilling Program and International Ocean Discovery Program.We use the logging data to derive orientations of the maximum principal stress axis at different depths followed by the reconstruction of stress orientations in each individual well.From these data,we further derive average stress orientations along the wells and use these data to reconstruct the stress trajectory field taking into account the presence of Megasplay fault.The results are shown as the stress trajectories of the maximum principal horizontal stresses.They are generally consistent with data the World Stress Map Project data.展开更多
Amidst the global push for decarbonization,solar-powered Organic Rankine Cycle(SORC)systems are gaining significant attention.The small-scale Organic Rankine Cycle(ORC)systems have enhanced environmental adaptability,...Amidst the global push for decarbonization,solar-powered Organic Rankine Cycle(SORC)systems are gaining significant attention.The small-scale Organic Rankine Cycle(ORC)systems have enhanced environmental adaptability,improved system flexibility,and achieved diversification of application scenarios.However,the power consumption ratio of the working fluid pump becomes significantly larger relative to the total power output of the system,adversely impacting overall system efficiency.This study introduces an innovative approach by incorporating a vapor-liquid ejector into the ORC system to reduce the pump work consumption within the ORC.The thermoeconomic models for both the traditional ORC and an ORC integrated with a vapor-liquid ejector driven by solar parabolic trough collectors(PTCs)were developed.Key evaluation indicators,such as thermal efficiency,exergy efficiency,specific investment cost,and levelized cost of energy,were employed to compare the SORC with the solar ejector organic Rankine cycle(SEORC).Additionally,the study explores the effects of solar beam radiation intensity,PTC temperature variation,evaporator pinch point temperature difference,and condenser pinch point temperature difference on the thermo-economic performance of both systems.Results demonstrate that SEORC consistently outperforms SORC.Higher solar radiation intensity and increased PTC inlet temperature lead to better system efficiency.Moreover,there is an optimal PTC temperature drop where both thermal and exergy efficiencies are maximized.The influence of evaporator and condenser temperature pinches on system performance is found to be inconsistent.展开更多
Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhu...Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhuang Formation shale samples from the Yanliao Basin in northern China,combined with sedimentary forward modeling,a systematic petrological and organic geochemical study was conducted on the reservoir quality,oil-bearing potential,distribution,and resource potential of the Hongshuizhuang Formation shale in Well Yuanji-2.The results indicate that:(1)The original organic carbon content of the Hongshuizhuang Formation shale averages up to 6.24%,and the original hydrocarbon generation potential is as high as 44.09 mg/g,demonstrating a strong oil generation potential.(2)The rock type is primarily siliceous shale containing low clay mineral content,characterized by the development of shale bedding fractures and organic shrinkage fractures,resulting in good compressibility and reservoir quality.(3)The fifth and fourth members of the Hongshuizhuang Formation serve as shale oil sweet spots,contributing more than 60%of shale oil production with their total thickness as only 40%of the target formation.(4)The Kuancheng-Laozhuanghu area is the most prospective shale oil exploration option in the Yanliao Basin and covers approximately 7200 km^(2).Its original total hydrocarbon generation potential reaches about 74.11 billion tons,with current estimated retained shale oil resources exceeding 1.148 billion tons(lower limit)–comparable to the geological resources of the Permian Lucaogou Formation shale oil in the Jimsar Sag of the Junggar Basin.These findings demonstrate the robust exploration potential of the Hongshuizhuang Formation shale oil in the Yanliao Basin.展开更多
Three extreme cold events occurred in eastern Asia in January 2016,January 2021,and December 2023.As important factors in atmospheric circulation anomalies,the Blocking High and East Asian Trough(BH-ET)structure playe...Three extreme cold events occurred in eastern Asia in January 2016,January 2021,and December 2023.As important factors in atmospheric circulation anomalies,the Blocking High and East Asian Trough(BH-ET)structure played key roles during these three extreme cold wave events.Among these two dynamic patterns,the BH affected the development of the cold waves in two different ways:(1)before the cold waves in 2016 and 2023,the BH pushed the cold air southward,resulting in a slow and gradual cooling,with a cooling rate(CR)in eastern Asia of 1.34℃d^(-1)and 1.2℃d^(-1),respectively,and(2)in January 2021,the sudden collapse of BH caused the cold air to rapidly attack mid-latitude regions,with a CR of 1.87℃d^(-1).In terms of the spatial CR,the temperature drop in 2021 occurred 38.8%and 55%faster than those in 2016 and 2023,respectively.At the same time,the ET influences the wind direction of cold waves by modulating the pressure gradient.Before the cold waves occurred,the meridional wind field near the ET showed negative values,forming northwesterly or northeasterly winds,which continued to affect the southern part of East Asia.The meridional wind in January 2021 was stronger than those in 2016 and 2023,which is thought to be the reason for the strength of the 2021 cold wave.Finally,results from the temperature Empirical Orthogonal Function(EOF)analysis from 1980-2023 verify an obvious BH-ET structure in the three cold wave events,which suggests that this particular climatological state provides a climatic background for the occurrence of cold waves.展开更多
This study identified the relationship between tropical cyclone(TC)activity and extreme Pacific–Japan(PJ)teleconnection patterns in August and September.In the East China Sea(ECS)and Mariana Islands(MI)regions,where ...This study identified the relationship between tropical cyclone(TC)activity and extreme Pacific–Japan(PJ)teleconnection patterns in August and September.In the East China Sea(ECS)and Mariana Islands(MI)regions,where the edge of the western North Pacific subtropical high(WNPSH)is located,approximately 60%–75%of TCs migrate to Far East Asian countries.A significant positive correlation existed between the frequency of northward migration of TCs and PJ patterns,since the TC frequency in the ECS and MI regions was significantly higher in the positive compared with the negative phase.In the positive phase,the main reason for the large number of TCs occurring was the monsoon trough’s location and strength.The strong and northeastward-shifted monsoon trough in the positive phase leads to more TCs in the ECS and MI regions.Other large-scale environments associated with TC formation also favored TC genesis around the ECS and MI regions.The higher PDI(power dissipation index)during the positive PJ phase can potentially lead to significant impacts in the Far East Asian countries.These characteristics were particularly more notable in August compared with September.展开更多
The Cambrian Qiongzhusi Formation in the Sichuan Basin harbors significant potential for shale gas harvesting.However,systematic disparities in mineral composition and reservoir architecture have been observed between...The Cambrian Qiongzhusi Formation in the Sichuan Basin harbors significant potential for shale gas harvesting.However,systematic disparities in mineral composition and reservoir architecture have been observed between intra-and extra-trough reservoirs within the Deyang-Anyue Rift Trough.These variations were primarily determined by divergences in the sedimentary environments developed during the evolution of the rift trough,which were a main factor in fostering the heterogeneous distribution of shale gas enrichment found today.However,the genetic mechanisms that govern reservoir heterogeneity across distinct structural domains(intra-trough,trough margin,and extra-trough)remain poorly understood,particularly regarding the coupling relationships between depositional environments,reservoir characteristics,and gas-bearing properties.This study adopts a multidisciplinary approach to investigating this issue that integrates core analysis,well-log interpretations,and geochemical data.Through systematic comparisons conducted using X-ray diffraction mineralogy,organic carbon quantification,and spontaneous imbibition experiments,we characterize the mineral assemblages,organic geochemical signatures,and pore structures found across the three structural domains of the Deyang-Anyue Rift Trough.The key findings are as follows:(1)The depositional environment is the main influence on reservoir distribution and organic matter enrichment,with intra-trough shales exhibiting a higher abundance of organic matter than their trough-margin and extra-trough counterparts.(2)Enhanced brittleness in intra-trough zones correlates with the predominance of biogenic silica therein.(3)Synergistic organic-inorganic interactions govern pore system development.(4)Gas-bearing capacity is jointly determined by effective porosity and organic matter content.These findings establish the rift trough as a preferential exploration target,providing critical geological guidance for optimizing shale gas exploration strategies in the Cambrian Qiongzhusi Formation.展开更多
BACKGROUND Plasma concentration monitoring is crucial for optimizing vancomycin use,particularly in patients in the intensive care unit(ICU).However,the reference interval for vancomycin plasma concentration remains u...BACKGROUND Plasma concentration monitoring is crucial for optimizing vancomycin use,particularly in patients in the intensive care unit(ICU).However,the reference interval for vancomycin plasma concentration remains undetermined.AIM To evaluate the correlations of area under the curve(AUC_(0-24))and trough concentration(C_(min))with efficacy and nephrotoxicity in patients in the ICU.METHODS A total of 103 patients treated with vancomycin for methicillin-resistant Staphylococcus aureus infections were analyzed in this study.The associations of clinicodemographic characteristics(including sex,age,weight,infection sites,main etiologies of ICU cases,comorbidities,acute physiological chronic health evaluation II score,and mechanical ventilation)and pharmacokinetics(daily dose,C_(min),AUC_(0-24),and AUC_(0-24)/minimum inhibitory concentration)with efficacy and nephrotoxicity of vancomycin were evaluated with univariate and multivariate logistic regression analyses.AUC_(0-24)was calculated using VCM-TDM software based on vancomycin population pharmacokinetics and Bayesian feedback method.RESULTS Cmin over 9.4μg/mL and AUC_(0-24)exceeding 359.6μg×hour/mL indicated good efficacy against infection.Cmin below 14.0μg/mL predicted no significant nephrotoxicity.CONCLUSION In this study,the effective and safe concentration interval for vancomycin in patients in the ICU was Cmin 9.4-14.0μg/mL.Close attention should be paid to adverse effects and renal function during vancomycin treatment.展开更多
Taking the natural gas reservoirs of the Sinian Dengying Formation on the east and west sides(Gaoshiti-Moxi area and north slope of central Sichuan paleo-uplift on the east;Weiyuan and Well Datan-1 block on the west)o...Taking the natural gas reservoirs of the Sinian Dengying Formation on the east and west sides(Gaoshiti-Moxi area and north slope of central Sichuan paleo-uplift on the east;Weiyuan and Well Datan-1 block on the west)of the Deyang-Anyue rift trough in the Sichuan Basin,China,as the research object,the geochemical parameters(component,isotopic composition)of natural gas from the Dengying Formation in different areas are compared,and then the differences in geochemical characteristics of Dengying natural gas on the east and west sides of the Deyang-Anyue rift trough and their genesis are clarified.First,the Dengying gas reservoirs on both sides of the rift trough are predominantly composed of oil-cracking gas with high maturity,which is typical dry gas.Second,severely modified by thermochemical sulfate reduction(TSR)reaction,the Dengying gas reservoirs on the east side exhibit high H2S and CO_(2) contents,with an elevated δ^(13)C_(2) value(average value higher than-29‰).The Dengying gas reservoirs in the Weiyuan area are less affected by TSR modification,though the δ^(13)C_(1) values are slightly greater than that of the reservoirs on the east side with partial reversal of carbon isotope composition,likely due to the water-soluble gas precipitation and accumulation mechanism.The Dengying gas reservoir of Well Datan-1 shows no influence from TSR.Third,the Dengying gas reservoirs reflect high helium contents(significantly higher than that on the east side)in the Weiyuan and Datan-1 areas on the west side,which is supposed to attribute to the widespread granites in basement and efficient vertical transport along faults.Fourth,controlled by the paleo-salinity of water medium in the depositional period of the source rock,the δ^(2)HCH_(4) values of the Dengying gas reservoirs on the west side are slightly lighter than those on the east side.Fifth,the Dengying natural gas in the Datan-1 area is contributed by the source rocks of the Sinian Doushantuo Formation and the third member of the Dengying Formation,in addition to the Cambrian Qiongzhusi Formation.展开更多
To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migong...To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.展开更多
BACKGROUND Kidney transplantation is an effective renal replacement therapy for improving survival and quality of life in chronic kidney disease patients.Kidney transplant recipients need lifelong immunosuppression to...BACKGROUND Kidney transplantation is an effective renal replacement therapy for improving survival and quality of life in chronic kidney disease patients.Kidney transplant recipients need lifelong immunosuppression to prevent rejection and allograft dysfunction.Tacrolimus,a calcineurin inhibitor,is metabolized differently based on cytochrome P4503A(CYP3A)5 genetic variations and this impacts the graft outcome.AIM To examine the clinical outcomes in kidney transplant recipients affected by the variable metabolism of tacrolimus due to the CYP3A5 genetic variation,emphasizing personalized immunosuppression strategies to optimize efficacy,minimize toxicity,and enhance long-term graft survival.METHODS A retrospective study was conducted at a tertiary care center in Central India on 95 kidney transplant recipients.Patient demographics,medical history,CYP3A5 polymorphism,post-transplant investigations,graft biopsy results,preexisting comorbidities,history of post–kidney transplant infections,and new onset diabetes after transplantation(NODAT)was collected.Tacrolimus was initiated at 0.1 mg/kg/day for CYP3A5 expressors and 0.05 mg/kg/day for non-expressors,with dose adjustments to maintain target C0 levels of 7-10 ng/mL for first 6 months and 5-7 ng/mL from 6 months to 12 months posttransplant.Patients were followed regularly for one year for glomerular filtration rate(GFR),creatinine,and the tacrolimus trough concentration(ng/mL)/daily tacrolimus dose(mg/kg/day)ratio(C/D).A P value≤0.05 was considered statistically significant.RESULTS Kidney transplant recipients were classified as expressors(CYP3A51 carriers,n=35)and non-expressors(CYP3A5*3*3,n=60).Both groups were comparable for age,sex,and donor characteristics.Tacrolimus dose was comparable post-transplant except at 6 months and 12 months,where expressors required higher doses.Kidney function(creatinine and estimated GFR),NODAT,hypomagnesemia,and infections showed no significant differences between the two groups over 12 months of follow-up.Biopsy-proven acute rejection(BPAR)was found to be more in expressors(22.9%vs 13.3%,P=0.2340)though it was not found to be statistically significant.Nonexpressors had a significantly higher tacrolimus levels and C/D ratio at multiple follow-ups.CONCLUSION CYP3A5 expressors require higher tacrolimus doses to maintain therapeutic levels as compared to non-expressors.BPAR was higher in expressors but the difference was not significant.Graft function,infection rate,and NODAT were comparable irrespective of CYP3A5 expression status,emphasizing the importance of pretransplant CYP3A5 genotyping and therapeutic drug monitoring to guide tacrolimus dosing for individualized immunosuppressive management.展开更多
There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circula...There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.展开更多
The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in M...The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in March EAT is closely related to that of April EAT.Extended empirical orthogonal function(EEOF)analysis also confirms the co-variation of the March and April EATs.The positive/negative EEOF1 features the persistent strengthened/weakened EAT from March to April.Further investigation indicates that the variations in EEOF1 are related to a dipole sea surface temperature(SST)pattern over the North Atlantic and the SST anomaly over the tropical Indian Ocean.The dipole SST pattern over the North Atlantic,with one center east of Newfoundland Island and another east of Bermuda,could trigger a Rossby wave train to influence the EAT in March−April.The SST anomaly over the tropical Indian Ocean can change the Walker circulation and influence the atmospheric circulation over the tropical western Pacific,subsequently impacting the southern part of the EAT in March−April.Besides the SST factors,the Northeast Asian snow cover could change the regional thermal conditions and lead to persistent EAT anomalies from March to April.These three impact factors are generally independent of each other,jointly explaining large variations in the EAT EEOF1.Moreover,the signals of the three factors could be traced back to February,consequently providing a potential prediction source for the EAT variation in March and April.展开更多
The lower Cambrian Qiongzhusi(Є1 q)shale in the Sichuan Basin,formerly considered a source rock,recently achieved high gas production(7.388×105 m^(3)·d^(-1))from well Z201 in the Deyang-Anyue rift trough(DAR...The lower Cambrian Qiongzhusi(Є1 q)shale in the Sichuan Basin,formerly considered a source rock,recently achieved high gas production(7.388×105 m^(3)·d^(-1))from well Z201 in the Deyang-Anyue rift trough(DART),marking an exploration breakthrough of the world’s oldest industrial shale gas reser-voir.However,the shale gas enrichment mechanism within the DART is not fully understood.This study reviews the formation of the Qiongzhusi shale gas reservoirs within the DART by comparing them with cotemporaneous deposits outside the DART,and several findings are presented.The gas production interval was correlated with the main phase of the Cambrian explosion(lower Cambrian stage 3).In the early Cambrian ecosystem,dominant animals likely accelerated the settling rates of organic matter(OM)in the upper 1st member ofЄ_(1) q(Є_(1) q_(12))by feeding on small planktonic organisms and producing larger organic fragments and fecal pellets.High primary productivity and euxinic con-ditions contributed to OM enrichment in the lower 1st member ofЄ1 q(Є_(1) q_(11)).Additionally,shale reservoirs inside the DART demonstrated better properties than those outside in terms of thickness,brittle minerals,gas content,and porosity.In particular,the abundant OM pores inside the DART facil-itated shale gas enrichment,whereas the higher thermal maturity of the shales outside the DART pos-sibly led to the graphitization and collapse of some OM pores.Meanwhile,the overpressure of high-production wells inside the DART generally reflects better shale gas preservation,benefiting from the shale’s self-sealing nature,"upper capping and lower plugging"configuration,and limited faults and microfractures.Considering these insights,we introduced a"ternary enrichment"model for the Qiongzhusi shale gas.Although the current high gas production of Z201 was found at the reservoir 3,two additional reservoirs were identified with significant potential,thus suggesting a"multilayer stereoscopic development"strategy in future shale gas exploration within the DART.展开更多
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC...A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid.展开更多
Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it...Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.展开更多
基金supported by the National Key R&D Program of China(2022YFF0504400)the National Natural Science Foundation of China(42188101,42274195,42174193)+2 种基金the International Partnership Program Of Chinese Academy of Sciences(Grant No.183311KYSB20200003)the USTC Research Funds of the Double First-Class Initiative(YD2080002013)the Joint Open Fund of Mengcheng National Geophysical Observatory(MENGO-202408).
文摘Statistical characteristics and the classification of the topside ionospheric mid-latitude trough are systemically analyzed,using observations from the Defense Meteorological Satellite Program F18(DMSP-F18)satellite.The data was obtained at an altitude of around 860 km in near polar orbit,throughout 2013.Our study identified the auroral boundary based on the in-situ electron density and electron spectrum,allowing us to precisely determine the location of the mid-latitude trough.This differs from most previous works,which only use Total Electron Content(TEC)or in-situ electron density.In our study,the troughs exhibited a higher occurrence rate in local winter than in summer,and extended to lower latitudes with increasing geomagnetic activity.It was found that the ionospheric mid-latitude trough,which is associated with temperature changes or enhanced ion drift,exhibited distinct characteristics.Specifically,the ionospheric mid-latitude troughs related to electron temperature(Te)peak were located more equatorward of auroral oval boundary in winter than in summer.The ionospheric mid-latitude troughs related to Te-maximum were less frequently observed at 60−70°S magnetic latitude and 90−240°E longitude.Furthermore,the troughs related to ion temperature(Ti)maximums were observed at relatively higher latitudes,occurring more frequently in winter.In addition,the troughs related to ion velocity(Vi)maximums could be observed in all seasons.The troughs with the maximum-Ti and maximum-Vi were located closer to the equatorward boundary of the auroral oval at the nightside,and in both hemispheres.This implies that enhanced ion drift velocity contributes to increased collisional frictional heating and enhanced ion temperatures,resulting in a density depletion within the trough region.
基金Supported by Takeda Australia,No.IISR-2016-101883.
文摘BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thiopurines on vedolizumab trough concentrations is unknown.AIM To investigate the exposure-response relationship of vedolizumab and the impact of thiopurine withdrawal in UC patients who have achieved sustained clinical and endoscopic remission during maintenance therapy.METHODS This is a post-hoc analysis of prospective randomized clinical trial(VIEWS)involving UC patients across 8 centers in Australia from 2018 to 2022.Patients in clinical and endoscopic remission were randomized to continue or withdraw thiopurine while receiving vedolizumab.We evaluated vedolizumab serum trough concentrations,presence of anti-vedolizumab antibodies,and clinical outcomes over 48 weeks to assess exposure-response asso-ciation and impact of thiopurine withdrawal.RESULTS There were 62 UC participants with mean age of 43.4 years and 42%were females.All participants received vedolizumab as maintenance therapy with 67.7%withdrew thiopurine.Vedolizumab serum trough concentrations remained stable over 48 weeks regardless of thiopurine use,with no anti-vedolizumab antibodies detected.Pa-tients with clinical remission had higher trough concentrations at week 48.In quartile analysis,a threshold of>11.3μg/mL was associated with sustained clinical remission,showing a sensitivity of 82.4%,specificity of 60.0%,and an area of receiver operating characteristic of 0.71(95%CI:0.49-0.93).Patients discontinuing thiopurine required higher vedolizumab concentrations for achieving remission.CONCLUSION A positive exposure-response relationship between vedolizumab trough concentrations and UC outcomes suggests that monitoring drug levels may be beneficial.While thiopurine did not influence vedolizumab levels,its with-drawal may necessitate higher vedolizumab trough concentrations to maintain remission.
文摘Renewable energy resources,including geothermal,are crucial for sustainable environmental management and climate change mitigation,offering clean,reliable,and low-emission alternatives to fossil fuels that reduce greenhouse gases and support ecological balance.In this study,geographic information system(GIS)predictive analysis was employed to explore geothermal prospects,promoting environmental sustainability by reducing the dependence on fossil energy resources.Spatial and statistical analysis including the attribute correlation analysis was used to evaluate the relationship between exploration data and geothermal energy resources represented by hot springs.The weighted sum model was then used to develop geothermal predictive maps while the accuracy of prediction was determined using the receiver operating characteristic/area under curve(ROC/AUC)analysis.Based on the attribute correlation analysis,exploration data relating to geological structures,host rock(Asu River Group)and sedimentary contacts were the most critical parameters for mapping geothermal resources.These parameters were characterized by a statistical association of 0.52,0.48,and 0.46 with the known geothermal occurrences.Spatial data integration reveals the central part of the study location as the most prospective zone for geothermal occurrences.This zone occupies 14.76%of the study location.Accuracy assessment using the ROC/AUC analysis suggests an efficiency of 81.5%for the weight sum model.GIS-based multi-criteria analysis improves the identification and evaluation of geothermal resources,leading to better decision-making.
基金Supported by the PetroChina Science&Technology Special Project(2023ZZ21YJ04)PetroChina Gas Reservoir Evaluation Project(20230304-08)。
文摘Based on the basic data of drilling,logging,testing and geological experiments,the geological characteristics of the Permian Dalong Formation marine shales in the northern Sichuan Basin and the factors controlling shale gas enrichment and high yield are studied.The results are obtained in four aspects.First,the high-quality shale of the Dalong Formation was formed after the deposition of the Permian Wujiaping Formation,and it is developed in the Kaijiang-Liangping trough in the northern part of Sichuan Basin,where deep-water continental shelf facies and deep-water reduction environment with thriving siliceous organisms have formed the black siliceous shale rich in organic matter.Second,the Dalong Formation shale contains both organic and inorganic pores,with stratification of alternated brittle and plastic minerals.In addition to organic pores,a large number of inorganic pores are developed even in ultra-deep(deeper than 4500 m)layers,contributing a total porosity of more than 5%,which significantly expands the storage space for shale gas.Third,the limestone at the roof and floor of the Dalong Formation acted as seal rock in the early burial and hydrocarbon generation stage,providing favorable conditions for the continuous hydrocarbon generation and rich gas preservation in shale interval.In the later reservoir stimulation process,it was beneficial to the lateral extension of the fractures,so as to achieve the optimal stimulation performance and increase the well-controlled resources.Combining the geological,engineering and economic conditions,the favorable area with depth less than 5500 m is determined to be 1800 km2,with resources of 5400×10^(8) m^(3).Fourth,the shale reservoirs of the Dalong Formation are thin but rich in shale gas.The syncline zone far away from the main faults in the high and steep tectonic zone,eastern Sichuan Basin,with depth less than 5500 m,is the most favorable target for producing the Permian shale gas under the current engineering and technical conditions.It mainly includes the Nanya syncline,Tanmuchang syncline and Liangping syncline.
文摘This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype.
文摘This paper presents some results of stress field reconstruction in the Nankai Trough subduction zone located within the area bounded by 136.3°–137°E and 33°–33.5°N where 12 scientific wells were drilled during Nankai Trough Seismogenic Zone Experiment expeditions of the Integrated Ocean Drilling Program and International Ocean Discovery Program.We use the logging data to derive orientations of the maximum principal stress axis at different depths followed by the reconstruction of stress orientations in each individual well.From these data,we further derive average stress orientations along the wells and use these data to reconstruct the stress trajectory field taking into account the presence of Megasplay fault.The results are shown as the stress trajectories of the maximum principal horizontal stresses.They are generally consistent with data the World Stress Map Project data.
基金This research was funded by Natural Science Foundation of Guangdong Province,grant number 2024A1515030130National Natural Science Foundation of China,grant number 42102336.
文摘Amidst the global push for decarbonization,solar-powered Organic Rankine Cycle(SORC)systems are gaining significant attention.The small-scale Organic Rankine Cycle(ORC)systems have enhanced environmental adaptability,improved system flexibility,and achieved diversification of application scenarios.However,the power consumption ratio of the working fluid pump becomes significantly larger relative to the total power output of the system,adversely impacting overall system efficiency.This study introduces an innovative approach by incorporating a vapor-liquid ejector into the ORC system to reduce the pump work consumption within the ORC.The thermoeconomic models for both the traditional ORC and an ORC integrated with a vapor-liquid ejector driven by solar parabolic trough collectors(PTCs)were developed.Key evaluation indicators,such as thermal efficiency,exergy efficiency,specific investment cost,and levelized cost of energy,were employed to compare the SORC with the solar ejector organic Rankine cycle(SEORC).Additionally,the study explores the effects of solar beam radiation intensity,PTC temperature variation,evaporator pinch point temperature difference,and condenser pinch point temperature difference on the thermo-economic performance of both systems.Results demonstrate that SEORC consistently outperforms SORC.Higher solar radiation intensity and increased PTC inlet temperature lead to better system efficiency.Moreover,there is an optimal PTC temperature drop where both thermal and exergy efficiencies are maximized.The influence of evaporator and condenser temperature pinches on system performance is found to be inconsistent.
基金Supported by the National Key R&D Program of China(2022YFF0800304)PetroChina Science and Technology Project(2023ZZ0203)。
文摘Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhuang Formation shale samples from the Yanliao Basin in northern China,combined with sedimentary forward modeling,a systematic petrological and organic geochemical study was conducted on the reservoir quality,oil-bearing potential,distribution,and resource potential of the Hongshuizhuang Formation shale in Well Yuanji-2.The results indicate that:(1)The original organic carbon content of the Hongshuizhuang Formation shale averages up to 6.24%,and the original hydrocarbon generation potential is as high as 44.09 mg/g,demonstrating a strong oil generation potential.(2)The rock type is primarily siliceous shale containing low clay mineral content,characterized by the development of shale bedding fractures and organic shrinkage fractures,resulting in good compressibility and reservoir quality.(3)The fifth and fourth members of the Hongshuizhuang Formation serve as shale oil sweet spots,contributing more than 60%of shale oil production with their total thickness as only 40%of the target formation.(4)The Kuancheng-Laozhuanghu area is the most prospective shale oil exploration option in the Yanliao Basin and covers approximately 7200 km^(2).Its original total hydrocarbon generation potential reaches about 74.11 billion tons,with current estimated retained shale oil resources exceeding 1.148 billion tons(lower limit)–comparable to the geological resources of the Permian Lucaogou Formation shale oil in the Jimsar Sag of the Junggar Basin.These findings demonstrate the robust exploration potential of the Hongshuizhuang Formation shale oil in the Yanliao Basin.
基金supported by the National Natural Science Foundation of China under Grant No.41821004,the National Key Research and Development Program of China under contract No.2022YFE0140500the National Key R&D Program of China under contract No.2022YFA1004403+2 种基金the Laoshan Laboratory Science and Technology Innovation Project No.LSKJ202202104the National Nature Science Foundation of China No.42130406the Project of Doctoral Found of Qingdao University of Science and Technology under contract No.210010022746.
文摘Three extreme cold events occurred in eastern Asia in January 2016,January 2021,and December 2023.As important factors in atmospheric circulation anomalies,the Blocking High and East Asian Trough(BH-ET)structure played key roles during these three extreme cold wave events.Among these two dynamic patterns,the BH affected the development of the cold waves in two different ways:(1)before the cold waves in 2016 and 2023,the BH pushed the cold air southward,resulting in a slow and gradual cooling,with a cooling rate(CR)in eastern Asia of 1.34℃d^(-1)and 1.2℃d^(-1),respectively,and(2)in January 2021,the sudden collapse of BH caused the cold air to rapidly attack mid-latitude regions,with a CR of 1.87℃d^(-1).In terms of the spatial CR,the temperature drop in 2021 occurred 38.8%and 55%faster than those in 2016 and 2023,respectively.At the same time,the ET influences the wind direction of cold waves by modulating the pressure gradient.Before the cold waves occurred,the meridional wind field near the ET showed negative values,forming northwesterly or northeasterly winds,which continued to affect the southern part of East Asia.The meridional wind in January 2021 was stronger than those in 2016 and 2023,which is thought to be the reason for the strength of the 2021 cold wave.Finally,results from the temperature Empirical Orthogonal Function(EOF)analysis from 1980-2023 verify an obvious BH-ET structure in the three cold wave events,which suggests that this particular climatological state provides a climatic background for the occurrence of cold waves.
基金the Korea Meteorological Administration Research and Development Program under Grant KMI(Grant No.RS-2023-00241809)conducted under the framework of the research and development program of the Korea Institute of Energy Research(C5-2422).
文摘This study identified the relationship between tropical cyclone(TC)activity and extreme Pacific–Japan(PJ)teleconnection patterns in August and September.In the East China Sea(ECS)and Mariana Islands(MI)regions,where the edge of the western North Pacific subtropical high(WNPSH)is located,approximately 60%–75%of TCs migrate to Far East Asian countries.A significant positive correlation existed between the frequency of northward migration of TCs and PJ patterns,since the TC frequency in the ECS and MI regions was significantly higher in the positive compared with the negative phase.In the positive phase,the main reason for the large number of TCs occurring was the monsoon trough’s location and strength.The strong and northeastward-shifted monsoon trough in the positive phase leads to more TCs in the ECS and MI regions.Other large-scale environments associated with TC formation also favored TC genesis around the ECS and MI regions.The higher PDI(power dissipation index)during the positive PJ phase can potentially lead to significant impacts in the Far East Asian countries.These characteristics were particularly more notable in August compared with September.
基金supported by the National Natural Science Foundation of China(No.24A20592).
文摘The Cambrian Qiongzhusi Formation in the Sichuan Basin harbors significant potential for shale gas harvesting.However,systematic disparities in mineral composition and reservoir architecture have been observed between intra-and extra-trough reservoirs within the Deyang-Anyue Rift Trough.These variations were primarily determined by divergences in the sedimentary environments developed during the evolution of the rift trough,which were a main factor in fostering the heterogeneous distribution of shale gas enrichment found today.However,the genetic mechanisms that govern reservoir heterogeneity across distinct structural domains(intra-trough,trough margin,and extra-trough)remain poorly understood,particularly regarding the coupling relationships between depositional environments,reservoir characteristics,and gas-bearing properties.This study adopts a multidisciplinary approach to investigating this issue that integrates core analysis,well-log interpretations,and geochemical data.Through systematic comparisons conducted using X-ray diffraction mineralogy,organic carbon quantification,and spontaneous imbibition experiments,we characterize the mineral assemblages,organic geochemical signatures,and pore structures found across the three structural domains of the Deyang-Anyue Rift Trough.The key findings are as follows:(1)The depositional environment is the main influence on reservoir distribution and organic matter enrichment,with intra-trough shales exhibiting a higher abundance of organic matter than their trough-margin and extra-trough counterparts.(2)Enhanced brittleness in intra-trough zones correlates with the predominance of biogenic silica therein.(3)Synergistic organic-inorganic interactions govern pore system development.(4)Gas-bearing capacity is jointly determined by effective porosity and organic matter content.These findings establish the rift trough as a preferential exploration target,providing critical geological guidance for optimizing shale gas exploration strategies in the Cambrian Qiongzhusi Formation.
基金Supported by the Key Project Plan of Health and Medical Science Research in Hebei Provincial Health Commission,No.20190745.
文摘BACKGROUND Plasma concentration monitoring is crucial for optimizing vancomycin use,particularly in patients in the intensive care unit(ICU).However,the reference interval for vancomycin plasma concentration remains undetermined.AIM To evaluate the correlations of area under the curve(AUC_(0-24))and trough concentration(C_(min))with efficacy and nephrotoxicity in patients in the ICU.METHODS A total of 103 patients treated with vancomycin for methicillin-resistant Staphylococcus aureus infections were analyzed in this study.The associations of clinicodemographic characteristics(including sex,age,weight,infection sites,main etiologies of ICU cases,comorbidities,acute physiological chronic health evaluation II score,and mechanical ventilation)and pharmacokinetics(daily dose,C_(min),AUC_(0-24),and AUC_(0-24)/minimum inhibitory concentration)with efficacy and nephrotoxicity of vancomycin were evaluated with univariate and multivariate logistic regression analyses.AUC_(0-24)was calculated using VCM-TDM software based on vancomycin population pharmacokinetics and Bayesian feedback method.RESULTS Cmin over 9.4μg/mL and AUC_(0-24)exceeding 359.6μg×hour/mL indicated good efficacy against infection.Cmin below 14.0μg/mL predicted no significant nephrotoxicity.CONCLUSION In this study,the effective and safe concentration interval for vancomycin in patients in the ICU was Cmin 9.4-14.0μg/mL.Close attention should be paid to adverse effects and renal function during vancomycin treatment.
基金Supported by the National Natural Science Foundation of China(42272161)PetroChina Science and Technology Major Project(2023ZZ16)Research Institute of Exploration and Development,PetroChina Southwest Oil&Gasfield Company(2024D101-01-06)。
文摘Taking the natural gas reservoirs of the Sinian Dengying Formation on the east and west sides(Gaoshiti-Moxi area and north slope of central Sichuan paleo-uplift on the east;Weiyuan and Well Datan-1 block on the west)of the Deyang-Anyue rift trough in the Sichuan Basin,China,as the research object,the geochemical parameters(component,isotopic composition)of natural gas from the Dengying Formation in different areas are compared,and then the differences in geochemical characteristics of Dengying natural gas on the east and west sides of the Deyang-Anyue rift trough and their genesis are clarified.First,the Dengying gas reservoirs on both sides of the rift trough are predominantly composed of oil-cracking gas with high maturity,which is typical dry gas.Second,severely modified by thermochemical sulfate reduction(TSR)reaction,the Dengying gas reservoirs on the east side exhibit high H2S and CO_(2) contents,with an elevated δ^(13)C_(2) value(average value higher than-29‰).The Dengying gas reservoirs in the Weiyuan area are less affected by TSR modification,though the δ^(13)C_(1) values are slightly greater than that of the reservoirs on the east side with partial reversal of carbon isotope composition,likely due to the water-soluble gas precipitation and accumulation mechanism.The Dengying gas reservoir of Well Datan-1 shows no influence from TSR.Third,the Dengying gas reservoirs reflect high helium contents(significantly higher than that on the east side)in the Weiyuan and Datan-1 areas on the west side,which is supposed to attribute to the widespread granites in basement and efficient vertical transport along faults.Fourth,controlled by the paleo-salinity of water medium in the depositional period of the source rock,the δ^(2)HCH_(4) values of the Dengying gas reservoirs on the west side are slightly lighter than those on the east side.Fifth,the Dengying natural gas in the Datan-1 area is contributed by the source rocks of the Sinian Doushantuo Formation and the third member of the Dengying Formation,in addition to the Cambrian Qiongzhusi Formation.
基金supported by the National Natural Science Foundation of China(Nos.42007178 and 41907327)the Natural Science Foundation of Hubei(Nos.2020CFB463 and 2019CFB372)+4 种基金China Geological Survey(Nos.DD20160304 and DD20190824)Fundamental Research Funds for the Central Universities(Nos.CUG 190644 and CUGL180817)National Key Research and Development Program(No.2019YFC1805502)Key Laboratory of Karst Dynamics,MNR and GZAR(Institute of Karst Geology,CAGS)Guilin(No.KDL201703)Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification,MNR and IRCK by UNESCO(No.KDL201903)。
文摘To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.
文摘BACKGROUND Kidney transplantation is an effective renal replacement therapy for improving survival and quality of life in chronic kidney disease patients.Kidney transplant recipients need lifelong immunosuppression to prevent rejection and allograft dysfunction.Tacrolimus,a calcineurin inhibitor,is metabolized differently based on cytochrome P4503A(CYP3A)5 genetic variations and this impacts the graft outcome.AIM To examine the clinical outcomes in kidney transplant recipients affected by the variable metabolism of tacrolimus due to the CYP3A5 genetic variation,emphasizing personalized immunosuppression strategies to optimize efficacy,minimize toxicity,and enhance long-term graft survival.METHODS A retrospective study was conducted at a tertiary care center in Central India on 95 kidney transplant recipients.Patient demographics,medical history,CYP3A5 polymorphism,post-transplant investigations,graft biopsy results,preexisting comorbidities,history of post–kidney transplant infections,and new onset diabetes after transplantation(NODAT)was collected.Tacrolimus was initiated at 0.1 mg/kg/day for CYP3A5 expressors and 0.05 mg/kg/day for non-expressors,with dose adjustments to maintain target C0 levels of 7-10 ng/mL for first 6 months and 5-7 ng/mL from 6 months to 12 months posttransplant.Patients were followed regularly for one year for glomerular filtration rate(GFR),creatinine,and the tacrolimus trough concentration(ng/mL)/daily tacrolimus dose(mg/kg/day)ratio(C/D).A P value≤0.05 was considered statistically significant.RESULTS Kidney transplant recipients were classified as expressors(CYP3A51 carriers,n=35)and non-expressors(CYP3A5*3*3,n=60).Both groups were comparable for age,sex,and donor characteristics.Tacrolimus dose was comparable post-transplant except at 6 months and 12 months,where expressors required higher doses.Kidney function(creatinine and estimated GFR),NODAT,hypomagnesemia,and infections showed no significant differences between the two groups over 12 months of follow-up.Biopsy-proven acute rejection(BPAR)was found to be more in expressors(22.9%vs 13.3%,P=0.2340)though it was not found to be statistically significant.Nonexpressors had a significantly higher tacrolimus levels and C/D ratio at multiple follow-ups.CONCLUSION CYP3A5 expressors require higher tacrolimus doses to maintain therapeutic levels as compared to non-expressors.BPAR was higher in expressors but the difference was not significant.Graft function,infection rate,and NODAT were comparable irrespective of CYP3A5 expression status,emphasizing the importance of pretransplant CYP3A5 genotyping and therapeutic drug monitoring to guide tacrolimus dosing for individualized immunosuppressive management.
基金supported by the National Natural Science Foundation of China(Grant No.42075015)the Science and Technology Commission of Shanghai Municipality,China(23DZ1204703).
文摘There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.
基金the National Natural Science Foundation of China(Grant Nos.41825010 and 42005024).
文摘The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in March EAT is closely related to that of April EAT.Extended empirical orthogonal function(EEOF)analysis also confirms the co-variation of the March and April EATs.The positive/negative EEOF1 features the persistent strengthened/weakened EAT from March to April.Further investigation indicates that the variations in EEOF1 are related to a dipole sea surface temperature(SST)pattern over the North Atlantic and the SST anomaly over the tropical Indian Ocean.The dipole SST pattern over the North Atlantic,with one center east of Newfoundland Island and another east of Bermuda,could trigger a Rossby wave train to influence the EAT in March−April.The SST anomaly over the tropical Indian Ocean can change the Walker circulation and influence the atmospheric circulation over the tropical western Pacific,subsequently impacting the southern part of the EAT in March−April.Besides the SST factors,the Northeast Asian snow cover could change the regional thermal conditions and lead to persistent EAT anomalies from March to April.These three impact factors are generally independent of each other,jointly explaining large variations in the EAT EEOF1.Moreover,the signals of the three factors could be traced back to February,consequently providing a potential prediction source for the EAT variation in March and April.
基金supported by the National Natural Science Foundation of China(U23B20155 and 42303004)China Postdoctoral Science Foundation(2023M730038)+1 种基金the Science and Technology Research Project for the China National Petroleum Corporation(2021DJ1802 and 2021YJCQ03)the National Postdoctoral Researcher Program of China(GZC20233111).
文摘The lower Cambrian Qiongzhusi(Є1 q)shale in the Sichuan Basin,formerly considered a source rock,recently achieved high gas production(7.388×105 m^(3)·d^(-1))from well Z201 in the Deyang-Anyue rift trough(DART),marking an exploration breakthrough of the world’s oldest industrial shale gas reser-voir.However,the shale gas enrichment mechanism within the DART is not fully understood.This study reviews the formation of the Qiongzhusi shale gas reservoirs within the DART by comparing them with cotemporaneous deposits outside the DART,and several findings are presented.The gas production interval was correlated with the main phase of the Cambrian explosion(lower Cambrian stage 3).In the early Cambrian ecosystem,dominant animals likely accelerated the settling rates of organic matter(OM)in the upper 1st member ofЄ_(1) q(Є_(1) q_(12))by feeding on small planktonic organisms and producing larger organic fragments and fecal pellets.High primary productivity and euxinic con-ditions contributed to OM enrichment in the lower 1st member ofЄ1 q(Є_(1) q_(11)).Additionally,shale reservoirs inside the DART demonstrated better properties than those outside in terms of thickness,brittle minerals,gas content,and porosity.In particular,the abundant OM pores inside the DART facil-itated shale gas enrichment,whereas the higher thermal maturity of the shales outside the DART pos-sibly led to the graphitization and collapse of some OM pores.Meanwhile,the overpressure of high-production wells inside the DART generally reflects better shale gas preservation,benefiting from the shale’s self-sealing nature,"upper capping and lower plugging"configuration,and limited faults and microfractures.Considering these insights,we introduced a"ternary enrichment"model for the Qiongzhusi shale gas.Although the current high gas production of Z201 was found at the reservoir 3,two additional reservoirs were identified with significant potential,thus suggesting a"multilayer stereoscopic development"strategy in future shale gas exploration within the DART.
文摘A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030003).
文摘Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.