一、请根据录音,填写单词。二、听对话,选择正确的答案。1.Where did Lucy go for her summer vacation?A.She stayed in the city.B.She went to the science museum.C.She went to Beijing.2.What did Tom think about climbing the G...一、请根据录音,填写单词。二、听对话,选择正确的答案。1.Where did Lucy go for her summer vacation?A.She stayed in the city.B.She went to the science museum.C.She went to Beijing.2.What did Tom think about climbing the Great Wall?展开更多
This summer holiday,my older brother and I paid a visit to my grandparents by bus.The bus was crowded,but everyone seemed to be friendly and helpful.We enjoyed beautiful views all the way.At first,we saw one hill afte...This summer holiday,my older brother and I paid a visit to my grandparents by bus.The bus was crowded,but everyone seemed to be friendly and helpful.We enjoyed beautiful views all the way.At first,we saw one hill after another.展开更多
Designing high-performance high-entropy alloys(HEAs)with transformation-induced plasticity(TRIP)or twinning-induced plasticity(TWIP)effects requires precise control over stacking fault energy(SFE)and phase stability.H...Designing high-performance high-entropy alloys(HEAs)with transformation-induced plasticity(TRIP)or twinning-induced plasticity(TWIP)effects requires precise control over stacking fault energy(SFE)and phase stability.However,the vast complexity of multicomponent systems poses a major challenge for identifying promising candidates through conventional experimental or computational methods.A high-throughput CALPHAD framework is developed to identify compositions with potential TWIP/TRIP behaviors in the Cr-Co-Ni and Cr-Co-Ni-Fe systems through systematic screening of stacking fault energy(SFE),FCC phase stability,and FCC-to-HCP transition temperatures(T0).The approach combines TC-Python automation with parallel Gibbs energy calculations across hundreds of thousands of compositions,enabling efficient extraction of metastable FCC-dominant alloys.The high-throughput results find 214 compositions with desired properties from 160,000 candidates.Detailed analysis of the Gibbs energy distributions,phase fraction trends,and temperature-dependent SFE evolution reveals critical insights into the thermodynamic landscape governing plasticity mechanisms in HEAs.The results show that only a narrow region of the compositional space satisfies all screening criteria,emphasizing the necessity of an integrated approach.The screened compositions and trends provide a foundation for targeted experimental validation.Furthermore,this work demonstrates a scalable,composition-resolved strategy for predicting deformation mechanisms in multicomponent alloys and offers a blueprint for integrating thermodynamic screening with mechanistic understanding in HEA design.展开更多
Metastable β-Ti alloys exhibiting twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) generally have excellent ductility, but typically at the expense of relatively low yield strengths whi...Metastable β-Ti alloys exhibiting twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) generally have excellent ductility, but typically at the expense of relatively low yield strengths which has restricted their widespread use. Our work shows that interstitial oxygen can be employed to regulate β phase stability to significantly enhance both strength and ductility of TWIP/TRIP alloys. For a Ti-32Nb wt.% base alloy, inclusion of 0.3 wt.% O enhanced ductility by more than 140 %, reaching up to 54 % strain, and improved the tensile yield strength by over 95 % to 632 MPa. Compared to other common engineering alloys such as Ti-45Nb, elongation was increased by 29 %, and the yield strength increased by 182 MPa, respectively. Here, we elucidate on impacts of oxygen doping on TWIP/TRIP behaviors in the Ti-32Nb alloy. We reveal that oxygen regulates the critical stress for martensitic transformation, twinning, and dislocation slip. At lower oxygen doping concentrations (≤0.3 wt.% O), multi-stage martensitic transformation and martensitic twinning resulted in high ductility. In higher oxygen content alloys (≥0.5 wt.% O), deformation occurred initially via twinning, while strain induced martensite was subsequently induced in retained β phase regions. Oxygen concentrations control the deformation mechanisms, providing a flexible means to synergistically balance an alloy's strength and ductility. The use of oxygen to enhance stability of the β phase and regulate deformation behaviors is a promising new approach for creating high-performance TWIP/TRIP metastable β-Ti alloys with outstanding mechanical properties.展开更多
The tensile behavior of(Fe_(50)Mn_(30)Co_(10)Cr_(10))_(100-x)Si_(x)(x=0(Si0),2(Si2))metastable HEAs prepared by selective laser melting was studied at cryogenic temperatures.The results demonstrate that the addition o...The tensile behavior of(Fe_(50)Mn_(30)Co_(10)Cr_(10))_(100-x)Si_(x)(x=0(Si0),2(Si2))metastable HEAs prepared by selective laser melting was studied at cryogenic temperatures.The results demonstrate that the addition of Si leads to lattice distortion and a decrease in stacking fault energy,especially at 77 K,which significantly promotes transformation-induced plasticity(TRIP)in Si2 HEAs.The yield strength,tensile strength,and ductility of Si2 HEAs are 505.2 MPa,1364.1 MPa,and 19%,which are 43%,53% and 58% higher than those of Si0 alloy,respectively.TRIP is the main deformation mode,in addition to dislocation slip,and plays a key role in strengthening.The reinforced and continuously sustained TRIP maintains a dynamic strain distribution during deformation.Ultrahigh strain hardening greatly enhances the strength and ductility.展开更多
文摘一、请根据录音,填写单词。二、听对话,选择正确的答案。1.Where did Lucy go for her summer vacation?A.She stayed in the city.B.She went to the science museum.C.She went to Beijing.2.What did Tom think about climbing the Great Wall?
文摘This summer holiday,my older brother and I paid a visit to my grandparents by bus.The bus was crowded,but everyone seemed to be friendly and helpful.We enjoyed beautiful views all the way.At first,we saw one hill after another.
基金supported by the U.S.Army Research Laboratory through their award#W911NF-22-2-0040the Ministry of Education,Youth and Sports of the Czech Republic through the e-INFRA CZ(ID:90254).
文摘Designing high-performance high-entropy alloys(HEAs)with transformation-induced plasticity(TRIP)or twinning-induced plasticity(TWIP)effects requires precise control over stacking fault energy(SFE)and phase stability.However,the vast complexity of multicomponent systems poses a major challenge for identifying promising candidates through conventional experimental or computational methods.A high-throughput CALPHAD framework is developed to identify compositions with potential TWIP/TRIP behaviors in the Cr-Co-Ni and Cr-Co-Ni-Fe systems through systematic screening of stacking fault energy(SFE),FCC phase stability,and FCC-to-HCP transition temperatures(T0).The approach combines TC-Python automation with parallel Gibbs energy calculations across hundreds of thousands of compositions,enabling efficient extraction of metastable FCC-dominant alloys.The high-throughput results find 214 compositions with desired properties from 160,000 candidates.Detailed analysis of the Gibbs energy distributions,phase fraction trends,and temperature-dependent SFE evolution reveals critical insights into the thermodynamic landscape governing plasticity mechanisms in HEAs.The results show that only a narrow region of the compositional space satisfies all screening criteria,emphasizing the necessity of an integrated approach.The screened compositions and trends provide a foundation for targeted experimental validation.Furthermore,this work demonstrates a scalable,composition-resolved strategy for predicting deformation mechanisms in multicomponent alloys and offers a blueprint for integrating thermodynamic screening with mechanistic understanding in HEA design.
基金supported by the Key R&D Program of Zhejiang(No.KZ7240079).
文摘Metastable β-Ti alloys exhibiting twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) generally have excellent ductility, but typically at the expense of relatively low yield strengths which has restricted their widespread use. Our work shows that interstitial oxygen can be employed to regulate β phase stability to significantly enhance both strength and ductility of TWIP/TRIP alloys. For a Ti-32Nb wt.% base alloy, inclusion of 0.3 wt.% O enhanced ductility by more than 140 %, reaching up to 54 % strain, and improved the tensile yield strength by over 95 % to 632 MPa. Compared to other common engineering alloys such as Ti-45Nb, elongation was increased by 29 %, and the yield strength increased by 182 MPa, respectively. Here, we elucidate on impacts of oxygen doping on TWIP/TRIP behaviors in the Ti-32Nb alloy. We reveal that oxygen regulates the critical stress for martensitic transformation, twinning, and dislocation slip. At lower oxygen doping concentrations (≤0.3 wt.% O), multi-stage martensitic transformation and martensitic twinning resulted in high ductility. In higher oxygen content alloys (≥0.5 wt.% O), deformation occurred initially via twinning, while strain induced martensite was subsequently induced in retained β phase regions. Oxygen concentrations control the deformation mechanisms, providing a flexible means to synergistically balance an alloy's strength and ductility. The use of oxygen to enhance stability of the β phase and regulate deformation behaviors is a promising new approach for creating high-performance TWIP/TRIP metastable β-Ti alloys with outstanding mechanical properties.
基金supported by Program for Innovative Research Team in Science and Technology in Fujian Province University,Chinathe Natural Science Foundation of Fujian Province,China(Nos.2023J011013,2020J01898)。
文摘The tensile behavior of(Fe_(50)Mn_(30)Co_(10)Cr_(10))_(100-x)Si_(x)(x=0(Si0),2(Si2))metastable HEAs prepared by selective laser melting was studied at cryogenic temperatures.The results demonstrate that the addition of Si leads to lattice distortion and a decrease in stacking fault energy,especially at 77 K,which significantly promotes transformation-induced plasticity(TRIP)in Si2 HEAs.The yield strength,tensile strength,and ductility of Si2 HEAs are 505.2 MPa,1364.1 MPa,and 19%,which are 43%,53% and 58% higher than those of Si0 alloy,respectively.TRIP is the main deformation mode,in addition to dislocation slip,and plays a key role in strengthening.The reinforced and continuously sustained TRIP maintains a dynamic strain distribution during deformation.Ultrahigh strain hardening greatly enhances the strength and ductility.